a2 United States Patent

Clark et al.

US009311437B2

US 9,311,437 B2
Apr. 12,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(62)

(60)

(1)

(52)

(58)

MODELING A BUS FOR A SYSTEM DESIGN
INCORPORATING ONE OR MORE
PROGRAMMABLE PROCESSORS

Applicant: Synopsys, Inc., Mountain View, CA

(US)

Inventors: Neville A. Clark, Quorroboling (AU);
James R. Torossian, Whale Beach (AU)

Assignee: Synopsys, Inc., Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/171,716

Filed: Feb. 3,2014
Prior Publication Data
US 2014/0156249 Al Jun. 5, 2014

Related U.S. Application Data

Division of application No. 12/017,939, filed on Jan.
22, 2008, now Pat. No. 8,644,305.

Provisional application No. 60/886,031, filed on Jan.
22,2007.

Int. Cl1.

GO6F 17/50 (2006.01)

U.S. CL

CPC ... GO6F 17/5031 (2013.01); GO6F 2217/84

(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,771,370 A * 6/1998 Kleinocoeevevivvenienins 703/13
5,918,035 A 6/1999 Van Praet et al.
6,026,461 A 2/2000 Baxter et al.
6,044,211 A 3/2000 Jain
6,125,612 A 10/2000 Main
(Continued)

FOREIGN PATENT DOCUMENTS

WO WO 2008/013968 A3 1/2008
OTHER PUBLICATIONS

Posner, M, et al, “Designing Using the AMBA™ 3 AXI Protocol—
Easing the Design Challenges and Putting the Verification Task on a
Fast Track to Success,” Synopsys, Inc, Apr. 2005, 10 pages.

(Continued)

Primary Examiner — Chirag Shah

Assistant Examiner — Suk Jin Kang

(74) Attorney, Agent, or Firm — HIPLegal LLP; Judith A.
Szepesi

(57) ABSTRACT

Systems and methods for modeling a bus for a system design
are provided. In an embodiment, the method operates by
accepting a virtual bus model, wherein the model simulates
behavior for a bus master and slave device, such that the
model accurately simulates the timing and behavior of the
transfer of data from master to slave, and, from slave to master
devices. The method routes a transaction issued by the master
device to the slave device. The transaction has storage for
transaction data, or a pointer to transaction data, to be trans-
ferred through the transaction. The transaction data is trans-
ferred in one or more data payloads and the sender of data sets
the length of data payloads to be returned. The data payloads
are sent from the sender of data to the receiver of data and may
contain one or more bus data beats. This method accurately
models the bus timing and behavior of the delivery of one or
more data beats as one data payload.

20 Claims, 24 Drawing Sheets

Virtual
Processor Controlier
Mods! Model
{Master} (Master}

R...W
E%‘«'_isEEE"
R W
Peripheral Peripheral Peripheral
Device Modsi Device Mods! Device Model
{Slave) (Stave} (Stave)

US 9,311,437 B2
Page 2

(56)

6,138,229
6,230,114
6,263,302
6,324,495
6,477,683
6,584,436
6,678,645
6,680,915
6,751,583
6,973,630
7,313,773
7,401,015
8,521,499
8,543,367
9,058,447
2001/0010072
2002/0019969
2002/0032559
2002/0035464
2002/0083420
2003/0115564
2003/0229741
2004/0088150
2004/0111247
2004/0117167
2004/0117168
2004/0122644
2004/0250231
2005/0055675
2005/0111490
2005/0165597
2005/0182884
2005/0228627
2005/0228628
2006/0031615
2006/0136615
2006/0149526
2006/0179182
2006/0190904
2006/0229858
2006/0235675
2006/0282233
2006/0282586
2007/0067528
2007/0201506
2008/0215304
2008/0319730
2009/0210597

References Cited

U.S. PATENT DOCUMENTS

A
Bl
Bl
Bl
Bl
B2
Bl
Bl
Bl
Bl
Bl
Bl
BL*
Bl
B2
Al
Al*
Al

*

Al
Al*
Al*

10/2000
5/2001
7/2001

11/2001

11/2002
6/2003
1/2004
1/2004
6/2004

12/2005

12/2007
7/2008
8/2013
9/2013
6/2015
7/2001
2/2002
3/2002
3/2002
6/2002
6/2003

12/2003
5/2004
6/2004
6/2004
6/2004
6/2004

12/2004
3/2005
5/2005
7/2005
8/2005

10/2005

10/2005
2/2006
6/2006
7/2006
8/2006
8/2006

10/2006

10/2006

12/2006

12/2006
3/2007
8/2007
9/2008

12/2008
8/2009

Kucukcakar et al.
Hellestrand et al.
Hellestrand et al.
Steinman
Killian et al.
Hellestrand et al.
Rajsuman et al.
Park et al.
Clarke et al.

Dao et al.

Braun et al.
Bailey et al.

Rompaey et al.
Van Rompaey et al.

Clark et al.
Yoshida

Hellestrand et al. ...

Hellestrand et al.
Finch
Zammit et al.
Chang et al.
Stuber et al.

Gay

Berevoescu et al.
Neifert et al.
Neifert et al.
Neifert et al.
Killian et al.
Neifert et al.
Gillet et al.
Nightingale et al.
Hofman et al.
Bellantoni et al.
Bellantoni et al.
Bruce et al.
Hofman et al.
Torossian et al.
Chadha et al.

Haji-Aghajani et al.

Devins et al.

Oslake et al.

Pasricha et al.
Shibuya
Schaffer et al.
Hofman et al.
Bailey et al.
Clark et al.
Terashima et al.

......... 703/13

........ 703/14

........... 716/5

703/22

......... 703/21

......... 703/19
....... 710/110

OTHER PUBLICATIONS

Reshadi, M. etal., “ReXSim: A Retargetable Framework for Instruc-
tion-set Architecture Simulation,” Feb. 2003, Center for Embedded
Computer Systems Technical Report #03-05, University of Califor-
nia, Irvine, sixteen unumbered pages.

Schnarr, E.C., “Facile: A Language and Compiler for High-perfor-
mance Processor Simulators,” 2001, Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and
Implementation, pp. 321-331.

Scoti, K. et al., “Strata: A Software Dynamic Translation Infrastruc-
ture,” 2001, citeseer.ist.psu.edu, pp. 1-10.

“AMBA AXA Protocol, v 1.0, Specification”, 2004, 108 pages, ARM
Limited.

Benini, et al., “SystemC Cosimulation and Emulation of Multipro-
cessor SoC Designs,” Computer, vol. 36 No. 4; Apr. 2003; pp. 53-59.
Braun, G. et al.,“Using Static Scheduling Techniques for the
Retartgeting of High Speed, Compiled Simulators for Embedded
Processors from an Abstract Machine Description,” 2001, Proceed-
ings of the 14th International Symposium on System Synthesis, pp.
57-62.

Moona, R., Processor Models for Retargetable Tools, 2000, Proceed-
ings of the 11th International Workshop on Rapid System Prototyp-
ing, pp. 1-6.

D’Errico et al., Constructing Portable Compiled Instruction-set
Simulaters-An ADL-driven Approach, Mar. 2006, Proceedings of
Design, Automation and Test in Europe, six unnumbered pages.
Fauth, A. et al., Decribing Instruction Set Processors Using nML,
Mar. 1995, European Design and Test Conference, pp. 503-507.
Halambi, A. et al., Expression: A language for architecture explora-
tion through compiler/simulator retargetability, 1999, Proceedings of
Design, Automation and Test in Europe, pp. 1-6.

IEEE Standard Hardware Description Language Based on Verilog
Hardware Description Language, IEEE Std 1354-1995, approved
Aug. 1996 American National Standards Institute, one page (abstract
only).

IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-
1993 (revision of IEEE Std 1076-1987), approved Sep. 1993 IEEE
Standards Board, one page (abstract only).

Khouri, Kamal S, et al, “Clock Selection for Performance Optimiza-
tion of Control-Flow Intensive Behaviors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
No. 1, Jan. 2001.

Leupers, R. et al., “Generation of Interpretive and Compiled Instruc-
tion Set Simulators,” Jan. 1999, Proceedings of the Design Automa-
tion Conferences, pp. 339-342.

Chandra, S. et al., “Retargetable Functional Simulator Using High
Level Processor Models,” 2000, International Conference on VLSI
Design, six unnumbered pages.

* cited by examiner

US 9,311,437 B2

Sheet 1 of 24

Apr. 12,2016

U.S. Patent

D

uonesnByucy
sng wds

Breig)
[RPOW 8dIAB(]
leaudusd

Mo o

dd48

Adds

uonenByuon
sngg pebiep

(ereg)
BP0 80IAS(]
pieydusd

Mo

4488

Mo

o1sep) 1BPow
JOSS800IS

ENIA

Mo
(B15eN} I8RO
JOSS300I

EOHIA

US 9,311,437 B2

Sheet 2 of 24

Apr. 12,2016

U.S. Patent

{ aneig) (BABIS)
IR0 BDIAB(] BRI 801AB0
pisudiusd jeseudLisg
{ gy 011e8)
I488
{ mosen A M { sesepy)
GHY ¢ BAEIG IXY) BpOW
{2P0A IGE8800IA
, =] b
sBpLg IXY fenLa
{ IXv 01188}

€S

US 9,311,437 B2

Sheet 3 of 24

Apr. 12,2016

U.S. Patent

£ 0id

(sam15) {enBig) (oreig)
DO 80IA8(IBPOKY 20IAEE BP0 BIAB(C
iesaydiag ereudusd eisydusd
M o A u A >
348 Hdds d4ddS
M o M = M b
BP0 108ULCDISIUL XY
AR b2 M ba
dd4s Ad8s
M b= M pa:
{41881) {11821
PoW Bpon
IGO0 JOSSB00I
VNG Jenyip

US 9,311,437 B2

Sheet 4 of 24

Apr. 12,2016

U.S. Patent

¥ Oid

2dA | 19N oo

Wod 100
OO 8N

HOdf shy

HOo N
IO SNg

adAl BN sng

4

adh | 19N 4000

US 9,311,437 B2

Sheet 5 of 24

Apr. 12,2016

U.S. Patent

& Oid

oABIQ
sNg

ﬁo%cé DOSMEIE(]
8 BABIS SHRD)

¥

<

LoD
siRiRAYEIR]
S ABISBR BN

UORoUN,
PESPUBLILICT
840881 SIBED

)
<

UORSUNE SS8008
SNE BARIS SHED

suibug
020104

sngpis

¢

LDROUNY pasniged]
S OARIS SHED

UOROUNY
sjgelBAYEIR(]
8 4831881 sHED

LCHOUNY
OSSMIPUBLILOT
5 21581 SlBD

)

3
A}

LNOBsUR Sonss|

1218BIN
sng

BINONNG

Z3lzlg
UCHDBESUBL]

US 9,311,437 B2

Sheet 6 of 24

Apr. 12,2016

U.S. Patent

L IIIE

BABIS
sSNg

FelralFigl!
pasnesodsoy
5,8ABIS SHED

uonoung
BIUBIRAYISUCHSDY

8 I3ISEY SieD

291580 SliBD

i

OOy
DOSHDUBLLILLOT
S ISR SHED

UOHOUNY S58008
SNE SABIS SIBD

uGiouny pasneied !

suibuz
1020104d

sngls

LOROUN
pasnasuodssy
8. 3ABIG SiED

UDHILNY
sjaepeAyasuodsay

8 SIS SieD

Qﬂmwn.v..mmm ﬁwwﬁwwmm
S IB188I SleD

¢

LOROUNY
DESMPUBLLLLICS
SIS SHED

UOROBSUR SBNSS)

1815BIN
sng

SAMONIS

e
uonsBsSURS |

US 9,311,437 B2

Sheet 7 of 24

Apr. 12,2016

U.S. Patent

LGIIUNG PSSR S.0ARIS
s sfien uaLy ‘WBuLIDESEBC DUS
CUIBEENOLL PBSIIEIE S158 ISRy BY |
UOHOUN] SIRIRAYRIZG S45)88 1N
alp sien pur ybuseiceiRAYEIR(
pue dUIBYSY0L L SIgRIRAYRIR]
5195 us i pasenbey ieisen

l

904

&

UOnoUN. pasnE

12(3ARIS SHRD)

)
C

o g Beg U ol pied Dyssuod 1T 0

gy Jepngaoinosd oy sssepdn |
pue pees ey sessecosd sagig oy |
i

UBHOUN DESMPUELILLCS S 8ISB) U}

LDHOLNS DIQBIBAYBIBG JOISEK SIRD

P R A I

§

}

sE0 pue W LPISOPURLILIOD
seepdn assig 8u) |
::::...:::..u..::.....:::.,..m..:
Sinos0 Buinpauss ou pug |
Aepmpeunu pessed s uopoesueiy |
i Uohoung apossg pessisiBes |

LUONOUN- pesnpuayY

e s eavsiaNBAGACARIROREIKOA G

-aid s @A 8 SHE0 pue {pesy)

03 LGRORSUE] 81U #1001 O} 104 sng
SABIG LOIUM SBUILISIED JdES oYL
UOROESURE B 58nSs) pus duusigyol |,
HOOKS BNE JUBLING O} CUIEISHI L MON
pie dUIBICHD! | SI0BIBAYDUBLILIOS
U} $188 PUR DUBLLILIOT) D28

B UM BINONEG BIBG N0 IBISBY

40 M4 KA A ALO AR OReAKI NG AN RO RGIEIN T AL KD

lorconorersonoscrcononcacsn

LD ISR SliRD

nameatsRoAcIsOXOGIEICONDB YOS

maseci1romarcacsnoacarnacrno

&

1senbey sanss|

SR BARS

1000304

swbug /

SAMS | e

.
y

S

v)

S

US 9,311,437 B2

Sheet 8 of 24

Apr. 12,2016

U.S. Patent

2 "4

P A A A R R L R R R N R R

pasenbay) 18

8uy 1BYL BIB(BL) 0 JUI0d O} JBIIO
gyery segngsoinogd auys selepdn pue
peol o1 $ossan0sd Mou BABIR BUL
SN900 Bunpsyos

ou pus ‘Aspewiy pessed

st uogossuel) sy {pesy pewmun)
uoriady sng senoided Sy A0 BABIS
U3 10 UOIDUN -4 sposar; palsisibal
2id SUL SHRD DUE LUORDBSURL Y

B} SBPOIBP MO TS SUL

LUORORSUR SLp
SHNSS! DUB DUBLLILOT) DESY DBLURUN
LR LA BIMONUIS BIECT 1IN0 Sl JRISER

P A A A O I I I I A A R A A e R & I I A AT)

o ¢ v 0% 556822000000 NBB600

b R %P LB EAASLE22094KNKAB RO

)

W %P HABSEsLD LI NEEBERAGD OO

KX XA RGO O OO LELEELEEBEDN PO

BABIS OF 85D00S(]

e 2230000000 ¥ ¥y IaODOORETI

4 886 6 000wk EIALEEEBITO PN RS

4682V PPIEHERANGGOOOOOE K K

&
1Eanboy pee senss

2200 PE AR X R BB O0D O LE DU U A A

008

ceExxT2o 00

b ek as o

4688820000

v 20080884

SOINS(] BAR|S

m aubuy
| jODOI0k] SNE IS

80N

SBI8EN

1

{ a b
N N
4 t
088 i@

US 9,311,437 B2

Sheet 9 of 24

Apr. 12,2016

U.S. Patent

8 "Oid

|

ore”|

. 1O
/g M

[

Uog
sng peay

8es O

ME DD
SN BUIM,

O
M ASCD
sng peoy

90IAB(] OAR|S

sdA | 19N sng

adh 1 1M #0010

008

U.S. Patent Apr. 12,2016 Sheet 10 of 24 US 9,311,437 B2

Y
o
[l

‘sfagtSamaﬁﬁﬁg:{éﬁEavaiﬁ%evéie«f;;?i/, 1030
Parameters

Ports
SlaveReadBusClock 2 o
SlaveReadBus™ 2108
SlavewrikeBusClock 7 38
SlaveWriteBus /1%

%ﬂ%aﬁﬁeadﬁusiiai%’x ~7 o
SlaveResadBus ™~ g
Slavewy Etﬁﬁﬁ%miﬁhk —_

SlaveWriteBus__ T
< — 1041

Sample slave device module

FIG. 10

US 9,311,437 B2

Sheet 11 of 24

Apr. 12,2016

U.S. Patent

ARTE o
{ i ; i j
| m m m L anva
. 3 g i :
A g g } 3 ered pee
b LN wmgg ! M W w W
AT
i j] g
g i i !
b 5 3 g i i
dsiva gsiva b § i H
iiiiiiii e e g e o e e o s o e s s s e
it} j ! } QA
5 j } i
{ BLbly f \Q i i ss0IpPY
j g P sinn 1 i ; pESY
f g m ! g }
m w m m I aavay
{ § i } i
: j j] }
sssssss wssswgaguaaga&&W&Wsswsggssssss;;
3 T i] { i
] o N } } i
lm/ Y10 \%, viva : : ,
e 7 i § i i
i N i P j
N v m TN |
] gorit i Nl B
;) ! A——r i
:] i i : i

U.S. Patent Apr. 12, 2016 Sheet 12 of 24 US 9,311,437 B2

SBPE calls Slave’s |
deceode function A
P

1255
//Y\\ /’\i/

7 S

\\

-

S . \\\
S..ﬁave busy e YES—p Queus ransaction
with Read 7 _~

\\ e

1253 T
s

-~
N

~

NO
®
L R, St CUTS and cail
- Master's
CommandUsed

NG

F-Y

e ” \

fa b ™~ T ™
- E?a 810 e NQae<_CiRUe eMply 7 >
S._Bocess 7o L P

~ L ~ -

e

=/
\
5,

Set DATS, DAL and Done
call Master's

DataAvailable function \
\\\
5

1280

¥ !‘2274
Masier sefs DUTS, ﬂ ’

DUL and calls Slava’s
{ratalised function

FIG. 12

US 9,311,437 B2

Sheet 13 of 24

Apr. 12,2016

U.S. Patent

1300

Write

Addraess

Write Data

{
i
H

§

R S R G W T G

p

RAT

H

3!
-

|

o o

;]
3 i
H §
i i
;]
: j -
: m < 5.
— o e e e B et - =
5 i R B
L S ! TN ey
§§§§3§$W@.\§hruﬁggﬁﬁw?aﬂm ggggg bren resnws A gmsgsei;%%agasgﬁﬂ
I 3 g = -
- o < =
& : T \%ﬁ &
e e e T e e e T LD o g o B e T
o o b rl
B 3 =
&ﬁwﬂﬁ%/ﬂﬂagga ssssss szms.;ﬂm.iegg §§¥§}3;3«M§§§ gggggg frves
%mgw g @ 0
iz “ . SAPST E N SR NGO
,awl.wﬁ\w%géﬂy@\m%éaaég Szwsa.ﬁa I qasﬁaawv@!.ﬁaeﬂﬂsﬁu
:
L i

e e 2 o e o

Amamwmmwwmmmmmmw%wmm

!
!
!
i

t
4
i
i
i

f

S\&\ 1382

!
{
]

B e

s e anensh ceeers cemen cenee oot

READY

Write
Response

b nooen aeooe cenon asene

T S

VALID

FiG. 13

U.S. Patent Apr. 12, 2016 Sheet 14 of 24 US 9,311,437 B2

14060

SRPE calls Slave's |7
decode function

¥ 1 1455
1453~ T N :

< Slave busy™s,
Twith wiite 27
\ ///

***** YES ¥ Queue transaction

o
ND
; ¥
1471 | Set CUTS and call
St Master's
iCommandised funct,

A
TN

1478 2____(,// Data fo ™ N
. process? 7 '
\\\/,/’
!

G

NO

YES
¥

73T | 8et DUTS DUL and
T call Master's
Datalsed function

Master sets DATS, |
DAL & calls Slave's |
DataAvaiable funct. |

1481 T N T N
i Data Finished 2> NO—— than

S
~.
~.
~
~ o

v Py
. ! ,/"// \\\\
YES < Quaue emplyZ—

¥ ~. o

1484~ Set RATS and call . 5 i
Lol Master's 1488 \fES
ResponseAvailable
function

-

.« .

gy | Master sets RUTS 1 Done
48 < & calls Slave's
Responselsed \

function ®

FIG. 14

U.S. Patent Apr. 12,2016 Sheet 15 of 24 US 9,311,437 B2

§3
e
A)
5
£
=
wm
fy
©
o
=
2 @
@H &
% &
biig
g 8 3z
g o o &
RN <. e 4]
73 o L2 —
G = P @
@ & = >
@0 2 I ks
2 — ® © & o
e R @ Bi = i
N £ S &S a
&)
s
=
[
[
)
[T
)

US 9,311,437 B2

Sheet 16 of 24

Apr. 12,2016

U.S. Patent

g1 "Oid

)
)
sel
prowd

. H

adA} BN sng

\m O o
/ SN FIIAA wmm DEG

1od
NI 001D
Sng SIIM

HOd

N SOID
SNy PEey

90IAB(] JOISEN

sdA | 19N HO0ID

U.S. Patent Apr. 12,2016 Sheet 17 of 24 US 9,311,437 B2

1700

YastSampledxiMasterlevice7 1750
Faramebers

Porks

MasterReadBusTlock 7 i
MasterReadBus 2 _iras
MasterwriteBusClock—77 1735
MastarWriteBus. /1740

Fort Or Net Yiews
MasterReadBusClock — 2"
, MasterResdBus <17
MasterWriteBusClock ——

H <""“‘“‘E?3?
MastarWriteBus—:

< A4
~—~ {741

FiG. 17

US 9,311,437 B2

Sheet 18 of 24

Apr. 12,2016

U.S. Patent

gl "Old

0 o1kg

aaeig AQ pasoubl sg pm 21RO

oAB|g AQ USHUM 8] ([IM BlE()

...............

L 8ihg

US 9,311,437 B2

Sheet 19 of 24

Apr. 12,2016

U.S. Patent

61 "Did

93138

U

Gd3is BN

- S

£ddls

anea SIS BARK 1 T
SNBA SI9C JHISEIN W

Higsuedsey

T

7t

CTovL ZiohL

FTOrL TG B00VL

Pt
[y
(&5

SIBAT O
ang UOHENULIS

S

Sl

sindg

SLYQ

Sivo

ASNOLSTY

YLV

SHGY

MO0 8NY

US 9,311,437 B2

Sheet 20 of 24

Apr. 12,2016

U.S. Patent

0% "Sid

I R I I I T T T S T S

JOISEIN 0 2suodess SUnal saRg By

P A R R RN R R I I

peoiied BiBp Y2ES JO) DRSIEye(§
SABIS ‘SIRIBAVEISC] SHES JOISE

o

@
LR}

e

“rousenosoerenavo et v oo e

.
N

000 3000 o R

DESNHUBLILIDT SHED 9AS D

AOBGHED SN MM DOUIL
posaysifiss 3,8ABIS SIED SNEDIS "g

4] wenhaysngmsdusy gery e

aromcumoMocAGKUAITLALAY I LLO B YLy D

-

cusesesevaeuovodac s el esonans oo

\5 ASOHIUN § POS(Y:
¥
FOGE

YSUOHSE OABIG SIED

0% @0oc cone ooos

UOOUN S SGRIEA

P R R R R R AT

T o s a0
o4
L
o
Of

¥

asUodenyd DISERY SR

tuecesseseced st uBes sty elona ot s

\” ,\coxuc:u DaE

0302

o

3
o o

¥
]

BiE{] 40308 R0

{ yserbodt
1841} 40 1a0Ke)

.n....e.o::w,oe.»\\:‘/.\\g,‘,.a:
gsoe’

1] 18 SjUBiRAR | peotted
N SHGBEAY BIB(] 8AB[S 5lED

H
¥

Lo DESH

vovsfesennesosorresonseseronacs

2000 2000 3000 odd G0

;
- SARIS O} SBPO0E(]
;
o
;\esg:nm"a:»e»a-naq}éoAae'c.n«

\

LEBLUIGT) JERRY BB

2502

w
o]

sanbay BeNss]

afiug 4
[OUN SNE PIS | 0607

Lun]
O e

7
P

<
&
<
“l
[

US 9,311,437 B2

Sheet 21 of 24

Apr. 12,2016

U.S. Patent

XA L

peFLE £dFLS ZdELE LAALE
N N M N
, ¥ Y b4 b
P W
piret L L :
mtm\\\\\\u s :
s "
\.\\\\\“ e M [

BIBA 5165 8ABIS G : : : e L
SNEA S19C IBISEIN I : . . .

AESUCUSEY : : : : GOLE -~ - x
] m
L WEivO M :
AN S :
: — /
! suay
A A
N \ M
i
LOPL CEOL [A RS 2N LiOvL OLOVL a00vL

SHIBAT MOLE
S5} UG

SING

843

SRR

SEYO

iv{d

SHOY

HICGIO &Y

[

™~

US 9,311,437 B2

Sheet 22 of 24

Apr. 12,2016

U.S. Patent

ZZ "9l

o

T I R L R R R

L)

ﬁa\ LN pes
I

9522

(1B 2ARQ SHRD

B
g

S

UoRsunY BlGe)
/

vazz! ¥

AgRIEC] ISISeW BiED

Ge4ssrrunm AR ARRT e L s AR

sre v aaaae

SRIGTHET ST YO8 0 PR DEUHE

UGHOUN 4 PRSI

S I Y

HBUIUNS IB1SEI SIIBD
i
N

U AN AN

i
2144

peBIes §.0ARIG SIIET) SNERIS 4

(senbemsnapiSidusy 1B 2

v 9 3B 00 ¥ E s B 00K A HEDO DR NOAGE A XSOL SR A2 DL 4 RAFD

&
- BARIS O] 58DODE(]

[4t#4

o B A R M B0 C L ARAPOOE AR AR R B D

beoturusuvooewrs oG e Ino D 6 ey

tevunsooecn

s 00 ensaon

A:

jsanboy Senas
1

BHAD BARIS

|
AN
P
i

ayeT 087z

US 9,311,437 B2

Sheet 23 of 24

Apr. 12,2016

U.S. Patent

£¢ 'Old

G687 €687 0682 E.m.m
™, /., ™, .,.r IS x i /
AN i /w { /j N
\ | | \
J8DOoB(] ﬁﬁmm&wm@@ﬂjm Ewﬁ@EQ ﬁﬁmEEQQ

ZOPUBLILUOT

U.S. Patent Apr. 12, 2016 Sheet 24 of 24 US 9,311,437 B2

2400
L, 2410
LA o P Processor -
2420
, 2430
o B Main Memory s
Busg
Secondary Memaory
g 2450
Hard Disk - AT 2440
Drive
1A Network L
3456 interface 4§ - . 2 AT
2480 -
L
Removable Removable
Stgrage o » Storage
Drive Ui
LA input/Quiput P,
D480 Devices

FiG. 24

US 9,311,437 B2

1
MODELING A BUS FOR A SYSTEM DESIGN
INCORPORATING ONE OR MORE
PROGRAMMABLE PROCESSORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a divisional of U.S. patent appli-
cation Ser. No. 12/017,939, filed Jan. 22, 2008, now U.S. Pat.
No. 8,644,305, issuing on Feb. 4, 2014, which claims the
benefit of U.S. Provisional Appl. No. 60/886,031, filed Jan.
22, 2007, which is incorporated by reference herein in its
entirety. The present application is related to U.S. application
Ser. No. 11/315,683 to Torossian et al., titled CLOCK SIMU-
LATION SYSTEM AND METHOD, filed Dec. 20, 2005, and
incorporated in its entirety herein by reference.

FIELD OF THE INVENTION

This application relates generally to the simulation of com-
plex circuit designs and specifically to the efficient simulation
of bus structures. This application is related to modifying a
provided virtual circuit bus model for use in simulating a
target processor running target software in hardware/software
simulation.

BACKGROUND OF THE INVENTION

The continued need for increasingly complex electronic
circuits has lead to corresponding demands for simulators
that can quickly simulate, to a high degree of accuracy, the
complex interactions occurring within a complex circuit. Cir-
cuits are growing more and more complex with “System On
Chip” (SoC) designs implemented that contain hundreds of
millions of logic circuits.

Systems on a chip (SoCs) that include programmable pro-
cessors are in widespread use, and using a virtual processor
model is particularly advantageous in designing such SoCs.
The bus design for such circuits is often obtained as part of a
pre-defined design for use in designing a SoC.

Virtual bus models for circuits containing one or more
programmable processors are detailed and therefore non-
trivial to design. As a result, vendors such as VaST Systems
Technology Corporation of Sunnyvale, Calif., provide pre-
defined virtual processor models for many popular proces-
SOIS.

Many SoCs, however, are designed to include one or more
custom, programmable processors, e.g., processors that
might be similar to an available processor design, but have
different word lengths, different operations, and so forth.

Various methods are currently used for the simulation of
complex electronic circuits. The circuit to be simulated is
normally described in a top down manner using a hardware
description language (HDL) such as VHDL or Verilog.
VHDL is described, for example, in IEEE Computer Society
“IEEE Standard VHDL Language Reference Manual” New
York, USA, June 1994, and Verilog is described, for example,
in IEEE Computer Society, “IEEE Standard Hardware
Description Language Based on the Verilog Hardware
Description Language, New York, USA, 1996, each of which
are incorporated by reference herein in pertinent parts. These
are commonly referred to as synthesis based approaches as
the same circuit description may also be used in the genera-
tion of the physical circuit layout. As circuit complexity con-
tinues to increase, there is a trend to move away from these
synthesis-based approaches to ones using higher level hard-
ware descriptions usually based on languages such as behav-

10

15

20

25

30

35

40

45

50

55

60

65

2

ioral VHDL, Verilog with behavioral extensions, C and C++.
An example of such a high-level simulation language is Sys-
temC which uses C++ as a system description language.

Once a circuit to be simulated is described in one of the
above languages, simulators are available for simulating
operation of the hardware device. For example, standard C++
compilers together with SystemC libraries can be used to
simulate SystemC coded models. Complex circuits are often
constructed using a high level language such as Verilog, Sys-
temC, VHDL, or the like, and extensively simulated using
cycle accurate simulators to verify operation. Subsequently,
after satisfactory verification, the model, if coded using a
synthesizable HDL,, may be directly synthesized into lower
level circuit designs. The model is extremely useful in allow-
ing verification of the design and target software to proceed
long before and even after the design has been implemented.

Bus structures are used in digital systems to connect pro-
cessors with memory, peripheral devices, etc. There are many
standard bus protocols known for bus structures, e.g., PCl and
the AMBA bus protocols by ARM Holdings PLC of Cam-
bridge, England including AMBA AHB, AMBA APB,
AMBA AHB_Lite, IbBus, U-Bus, and others. There are many
interconnect protocols, such as the Sun Host to PCI Bridge
protocol (HPB) by Sun Microsystems, Inc. of Menlo Park,
Calif.

New bus protocols have become available that provide for
much more complex behavior than older bus systems. Such
more complex behaviors include the ability of a master device
to execute several transactions at a time, and for slave devices
to receive and process several transactions at a time. Further-
more, bus protocols have recently been developed for incor-
porating complex interconnects between devices, e.g., inter-
connects that include switching fabrics. In such an
architecture, several master devices and several slave devices
may connect to an interconnect circuit each using, for
example, a bus structure that supports several transactions at
once. The interconnect includes switching elements, buffers,
etc., that provide for interconnecting the master devices and
slave devices, including issuing and/or processing several
transactions at once.

One example of such a bus structure is the AMBA® AXI
Protocol (hereinafter AXI protocol, or simply AXI) as
defined, for example, in the published specification of AXI,
titled “AMBA® AXI Protocol Specification, V1.0, by ARM
Ltd., also known as the AMBA specification.

Accordingly, there is a need for methods, systems, and
computer program products for simulating bus structures.
What is also needed are methods, systems, and computer
program products to model such bus structures and their
connections to interconnect circuits.

Some programmable processor types, however, contain
many structures in common. Furthermore, programmable
processors tend to fall into families that have aspects in com-
mon. Accordingly, what is needed are methods, systems, and
computer program products which are able to simulate and
model bus structures for system designs incorporating one or
more programmable processors.

Thus there is a need for a customizable virtual bus model
for system designs including one or more programmable
processors, and for a method and apparatus for modifying a
provided virtual bus model.

SUMMARY

Described herein are methods, computer program prod-
ucts, and systems operative to model a system that incorpo-
rates a bus, e.g., to model a bus to which other device models

US 9,311,437 B2

3

are connectable. The bus allows a plurality of transactions at
a time, e.g., concurrent read and write without arbitration,
such as a bus that conforms to the AXI specification.

In one embodiment, the model provides backward compat-
ibility with a more conventional bus. In another embodiment,
the bus model is connectable to a master device model that
includes a read port and a separate write port. According to an
embodiment, the bus model is connectable to a slave device
model that includes a read port and a separate write port. One
feature of so splitting the bus model to read and write ports is
to provide backward compatibility. For example, for a com-
plex bus, having separate read and write ports provides for
concurrent reads and writes with no arbitrations. When mod-
eling with a more conventional bus, reads to the bus pass via
the read port, and writes to the bus pass via the write port.

One method embodiment includes signaling of data pay-
loads between a sender of data and a receiver of data where
data within a bus transaction comprises one or more data
beats. The entire sequence of data beats within the bus trans-
action may be broken into one or more data payloads.

In one method embodiment, the sender of data signals the
availability of “committed” beats in the form of a data pay-
load to the receiver, including the following information:

The number of “committed” beats, either directly, or indi-
rectly as a value which may be calculated from other param-
eters; the data contained in these “committed” beats; the
clock cycle edge at which the first “committed” beat is made
available.

In one method embodiment, the receiver signals accep-
tance of the “committed” beats forming the data payload to
the sender, including the following information: the clock
edge at which the last of the “committed” beats was accepted.

In one embodiment, clock edges, e.g., clock edges of
events, can be communicated via one or more of: the absolute
time; a relative time ahead of some other event; a number of
clock edges; and a relative number of clock edges ahead of
some other event.

In another embodiment, data payloads can be communi-
cated via a pointer to a buffer containing data, and one or more
of: the offsets within the buffer of the start and end of the
payload; the offset to the start of the payload within the buffer,
and the number of beats in the payload; the offset to the start
of the payload within the buffer, and the number of bytes in
the payload.

One result of this is a method wherein a sender of a
sequence of data beats can send data ahead of simulation time
to a receiver of data without compromising cycle accuracy of
the data. By committing to a number of data beats in the form
of a data payload, and breaking up the data transfer into a
sequence of data payloads, the sender of data is able to sig-
nificantly improve data transfer simulation performance. In
one embodiment, the sender is only allowed to “commit™ to a
data payload if there is no circumstance which could occur
which would cause the sender to “de-commit” one or more
data beats within the payload.

In another embodiment, transmissions of data, from either
a sender that is a slave device to a receiver that is a master
device, e.g., as is the case for a bus read transaction, or from
a sender that is a master device to a receiver that is a slave
device, e.g., as in a bus write transaction, include the follow-
ing.

(A) The sender decides how many data beats to commit to
supply to the receiver. The deciding is in one embodiment on
the basis of factors including one or more of: availability of
the data, data channel, current simulation time, transaction
time, total number of beats, size of data to be transferred, and
the states of all pending transactions. If this number of data

10

15

20

25

30

35

40

45

50

55

60

65

4

beats to commit is not 0, in an embodiment, the sender indi-
cates the intention to supply the number of beats either
directly in the transaction or indirectly through some other
mechanism and proceeds to the marking of the data channel
as busy (see step (B) below), otherwise, the sender waits for
some other event to occur and repeats the deciding of'this step
A).

(B) The sender marks the data channel busy.

(C) The sender indicates, either directly in the transaction
or indirectly through some other mechanism, the simulated
time, which may be in future simulation time, at which the
first of the committed data beats is being made available.

(D) The sender either moves the committed data beats into
a buffer associated with the transaction or creates an associa-
tion between the transaction and the committed data beats in
an existing buffer.

(E) The sender then signals the receiver, either directly
through a call to the receiver’s function or indirectly through
some other mechanism, that the number of data beats is
available.

(F) The receiver then calculates, either during the receipt of
such signal from the sender, or at some later point in the
execution of the simulation model, on the basis of time of
availability of the data payload, current simulation time,
transaction time, total number or beats in the payload, size of
data to be transferred and other factors, at what point in
simulation time the last of the beats within the data payload
will be accepted. The receiver indicates the point in simula-
tion time that the last of the beats with the data payload will be
accepted either directly in the transaction or indirectly
through some other mechanism.

(G) The receiver then signals the sender, either directly
through a call to the receiver’s function or indirectly through
some other mechanism, the acceptance of the data payload.

(H) On receipt of such signal, and on the basis of the time
at which the last data payload has been accepted, the sender
marks the data channel not busy, and, if there are remaining
beats to be transferred, proceeds to step (A) above.

One embodiment of the invention includes dynamic trans-
action event stitching between master and slave devices com-
municating through a transaction channel.

One embodiment of the invention includes a combination
of bus decoders to provide a model of a bus that includes
automatic bus routing.

One embodiment operates on a simulation platform that
includes a scheduler that schedules operation of the various
models.

In one embodiment, the mechanisms for specifying the
interface between a master device and a slave device provide
a mechanism wherein a bus is modeled such that no excess
synchronization is required for any event that requires syn-
chronization. The modeled bus is able to handle multiple
simultaneous transactions, and further is able to handle mul-
tiple master devices issuing these multiple simultaneous
transactions.

In another embodiment, a sender, e.g., a master device as
sender, passes to a receiver, e.g., a slave device as receiver,
access to functions that are the receiver’s (e.g., slave’s) func-
tion(s), such that the receiver, e.g., the slave, can operate,
including calling such functions, thus not requiring synchro-
nization.

These functions each provide the timing of the event they
represent such that, for example, a receiver, e.g., a slave as
receiver, can process the sender’s event at the timing of that
event without requiring synchronization between the sender,
e.g., the master, and the receiver, e.g., the slave.

US 9,311,437 B2

5

In this manner, embodiments of the invention provide for
signaling an event in so called “negative” time, i.e., before
“now.” For example, the invention provides for modeling a
bus wherein a write data channel is allowed to issue the data
for a transaction before that transaction’s command and
address are issued in the respective channels.

Other embodiments, aspects, features, and advantages will
be clear from the description and claims provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts in simplified block diagram form two pos-
sible bus configurations with the StdBus protocol engine
(SBPE), according to an embodiment of the invention.

FIG. 2 shows in simplified block diagram form a virtual
system prototype that includes a virtual platform that has a
virtual processor model, an AXI to AHB Bridge model, and
AHB peripheral device models, according to an embodiment
of the present invention.

FIG. 3 shows in simplified block diagram form a virtual
system prototype that includes a virtual platform that has an
AXI Bus virtual processor model, an AXI Bus DMA Con-
troller model, an AXI Interconnect model, and AXI Bus
peripheral device models, according to an embodiment of the
present invention.

FIG. 4 shows the architecture of a StdBus Protocol engine
that includes a set of port connections, according to an
embodiment of the present invention.

FIG. 5 depicts in block diagram form, a mechanism for the
StdBus AXI protocol, single data payload read transaction
processing, according to an embodiment of the present inven-
tion.

FIG. 6 depicts in block diagram form, another basic
mechanism for the StdBus AXI protocol, single data payload
early data write transaction processing, according to an
embodiment of the present invention.

FIG. 7 illustrates the flow of a StdBus (type 2 protocol)
single data payload read transaction, according to an embodi-
ment of the present invention.

FIG. 8 shows an un-timed read transaction in one embodi-
ment of the invention, according to an embodiment of the
present invention.

FIG. 9 shows a representation of a typical slave device
showing StdBus ports and the architecture modeling API port
connections necessary to achieve communications with the
StdBus AXI protocol engine, according to an embodiment of
the present invention.

FIG. 10 shows, a slave device bus interface using some of
the tools that are included in the COMET System Engineer-
ing Environment, according to an embodiment of the present
invention.

FIG. 11 illustrates the timing of each of the two channels
involved in a timed AXI read transaction with two data pay-
loads, according to an embodiment of the present invention.

FIG. 12 is a flowchart illustrating steps by which an AXI
slave can process read transactions, according to an embodi-
ment of the present invention.

FIG. 13 shows the timing of each channel involved during
an AXI write transaction according to an embodiment of the
present invention.

FIG. 14 is a flowchart illustrating steps by which an AXI
slave can process write transactions according to an embodi-
ment of the present invention.

FIG. 15 shows each of the transaction data structure fields
with respect to the pSourceBuffer data buffer according to an
embodiment of the present invention.

15

20

30

35

40

45

50

55

60

65

6

FIG. 16 depicts a master device representation showing the
architecture modeling API port connections used to achieve
communications with the StdBus AXI protocol engine,
according to an embodiment of the present invention.

FIG. 17 shows a master device bus interface in the form of
a high level view of the connections available to other mod-
ules as seen in the COMET System Engineering Environment
(SEE) framework, according to an embodiment of the present
invention.

FIG. 18 illustrates how a byte enable array can be set-up to
ignore odd bytes and write only even numbered bytes in a
transfer, according to an embodiment of the present inven-
tion.

FIG. 19 shows typical timing for a write transaction which
is requested to a StdBus instance with the protocol set to AXI,
according to an embodiment of the present invention.

FIG. 20 illustrates the communication that occurs between
the various models: master device, StdBus (the bus model),
and the slave device; for an AXI write transaction according
to an embodiment of the present invention.

FIG. 21 shows an example timing diagram for a read trans-
action which is requested to a StdBus instance with the pro-
tocol set to AX], according to an embodiment of the present
invention.

FIG. 22 shows the communication that occurs between the
various models: master device, StdBus (the bus model), and
the slave device; for an AXI read transaction according to an
embodiment of the present invention.

FIG. 23 illustrates how the Command32 field is comprised
of'4 single byte sub-fields in accordance with an embodiment
of the present invention.

FIG. 24 depicts an example computer system in which the
present invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION
1.0 Structural Embodiments

Briefly, as described in U.S. patent application Ser. No.
11/830,435, filed Jul. 30, 2007 and titled METHOD AND
APPARATUS FOR MODIFYING A VIRTUAL PROCES-
SOR MODULE FOR HARDWARE/SOFTWARE SIMU-
LATION, which is incorporated by reference herein in its
entirety, a ‘virtual system prototype’ is a set of software
instructions, e.g., a software system, that when executing
(running) on a host processing system simulate a hardware/
software system that includes a processor (“target proces-
sor”) and target processor memory, with the target processor
memory including instructions (“target software”) that are for
execution on the target processor. By a hardware/software
system is meant a system that includes a programmable pro-
cessor, and the instructions—the target software—for oper-
ating that target processor. A hardware/software system, for
example, may include a device, such as amobile telephone, or
a discrete component contained within a device. A hardware/
software system may also include an installation, for example
amobile telephone base station. One aspect of the invention is
for a virtual system prototype to provide a highly accurate and
responsive model of such hardware/software systems, in par-
ticular a model of a bus structure. One can also develop a
virtual system prototype to model the entire system, e.g., the
mobile telephone together with the mobile telephone base
station, and the communication pathway between them.

A virtual system prototype may be used to analyze the
performance of the hardware architecture, develop and test

US 9,311,437 B2

7

target software, and examine the interaction between the
hardware and software subsystems, before one builds the
actual hardware.

Running a virtual system prototype is sometimes called
hardware/software co-design, or simply co-design.

The elements of a virtual system prototype include device
models. A device model is a virtual representation—a repre-
sentation as software executing on the host processor sys-
tem—of a hardware unit that is capable of providing input to
a system or of receiving output from the system, or both.
Examples of device models include timers, controllers,
memories, and virtual processor models. Devices may be
connected by buses, and a bus is represented by a bus model.
Embodiments of the present invention deal with bus models.

The models described herein are behavioral models that are
timing accurate. A behavioral model provides the function of
the device being modeled without necessarily providing
accurate timing. Models can also be clock cycle accurate.
Such a cycle accurate model is able to provide the state of the
processor elements at any clock tick. For this, each clock
cycle is simulated, and the model replicates the structures that
are in the processor.

One of the challenges of simulating a hardware/software
system is to have timing-accurate models that execute rela-
tively fast on the host processing system. Behavioral models
that do not provide timing accuracy can be relatively fast. On
the other hand, clock cycle accurate models, e.g., structural
models, are either not particularly detailed in what they simu-
late, or run relatively slowly in order to simulate a significant
number of structural elements.

The models, in particular the bus models described herein
that include aspects of the present invention, provide full
functionality, e.g., are full behavioral models, and further are
timing accurate. For example, when combined with virtual
processor models that can execute target code that is in a
memory model with instruction and transaction time accu-
racy, providing bus transaction modeling is useful, for
example, in simulating bus and other interactions with other
models. However, running such models does not necessarily
include simulating all clock cycles. For example, one feature
of'the way we simulate is that if no significant events occur for
a number of clock cycles, there is no need to simulate each
and every one of those clock cycles.

In the case of some virtual processor models and some
devices, some methods for achieving such behavioral and
timing accuracy with such speed are described in U.S. Pat.
No. 6,230,114 titled HARDWARE AND SOFTWARE CO-
SIMULATION INCLUDING EXECUTING AN ANA-
LYZED USER PROGRAM, U.S. Pat. No. 6,263,302 titled
HARDWARE AND SOFTWARE CO-SIMULATION
INCLUDING SIMULATING THE CACHE OF A TARGET
PROCESSOR, U.S. Pat. No. 6,584,436 titled HARDWARE
AND SOFTWARE CO-SIMULATION INCLUDING
EXECUTING AN ANALYZED USER PROGRAM, and
U.S. Pat. No. 6,751,583 titted HARDWARE AND SOFT-
WARE CO-SIMULATION INCLUDING SIMULATING A
TARGET PROCESSOR USING BINARY TRANSLA-
TION. See also U.S. Patent Appl. Publ. No. 2006/0149526
titted CLOCK SIMULATION SYSTEM AND METHOD.
The contents of each patent and patent application are incor-
porated herein by reference.

As used herein, a virtual system prototype has no ports,
external connections, or behavior. It is the top-level container
for other modules. A virtual system prototype is the equiva-
lent to what is called a test bench in a VHDL simulation
system.

30

40

45

55

8

A virtual system prototype contains one or more virtual
platforms, which in turn contain models of the actual devices
or components contained within the system. All elements
within the virtual system prototype are arranged in a hierar-
chy that generally reflects the structure of the actual hard-
ware/software system.

Virtual platforms are the building blocks of a virtual system
prototype, and contain the underlying models of the system.
A simple virtual system prototype usually includes a single
virtual platform, containing one or more virtual devices; how-
ever, virtual platforms can have arbitrary complexity. Virtual
platforms can include many hierarchies of subsystems,
including other virtual platforms; virtual processor models
that model the actual processor(s) and execute software
embedded within the product, peripheral device models that
emulate the functionality of the peripheral hardware devices,
and interconnections. Virtual platforms can be intercon-
nected.

Inthe present disclosure, a standard Bus (StdBus) protocol
engine (StdBus protocol engine, SBPE) is the main compo-
nent of a generic bus model that can be used for device and
module interconnect. In this disclosure, the term StdBus is
sometimes used without the words protocol engine, and is
used to mean the generic bus model, that is, the StdBus
protocol engine.

The StdBus protocol engine provides an interface to virtual
processor models, peripheral device models, and memory
models, and represents the standard concept of address and
data phases along with associated control and timing in a bus
transaction. The StdBus net can be considered to be a single
net type containing all information needed for inter-commu-
nication between modules via a bus.

The StdBus protocol engine is also provided with a set of
configuration parameters to allow users to control aspects
such as monitoring, debugging etc.

Tasks and Callback Functions

In the example embodiments described herein, a C-Lan-
guage modeling environment includes a set of functions,
some of which are described herein below. Some of the primi-
tives described herein are for tasks and for callback functions
that are written in the C-language and that a user can use in
building the model to implement bus structures and for other
clock-scheduled event scheduling.

A distinction is made herein between a “task™ and a “call-
back function.” Each of these refers to a part of a model, e.g.,
a function that is coded in one example using the C-language
or its derivates, e.g., C++. A task herein refers to a section of
an actual model. In an embodiment, when an instance of a
model is set up during initialization, instances of any tasks in
the model are also created. Thus, a task is a part of a coded
model that operates as a separate process with its own time-
line. A task can suspend operation of itself at a point in
simulation time of the hardware model it is contained in, and
resume operation at some future point in simulation time of
that hardware model. The operation of the task thus can
consume hardware simulation time.

A callback function herein refers to a section of a model
that operates at a single instant in simulation time of the
overall model. The section is typically coded in C-language or
its derivatives. A callback function cannot suspend or resume
operation of the hardware model, so a callback function exits
at the same instant in simulation time at which it is invoked. A
callback function may be directly invoked from a task. A
callback function may also be directly invoked from a call-
back function. Similarly, a callback function may be sched-
uled to be invoked by a task, or scheduled to be invoked by a
callback function.

US 9,311,437 B2

9

Callback functions are in one embodiment registered at
initialization time to be associated with a particular clock
signal for scheduling according to one or more attributes of
the clock signal. Registering is also called “installing.” When
a callback function associated with a particular clock signal is
registered, e.g., for later scheduling, a handle or identifier for
that callback function associated with a clock signal is gen-
erated and provided as a result of the registering. The handle
provides a mechanism for scheduling an event, e.g., a call-
back to that callback function. If that event is in reference to
aclock net, the handle specifying the clock net will have been
provided during registration, so the handle for the callback
function implicitly includes the handle for the associated
clock signal.

For example, a callback function may be scheduled by an
event scheduler in the environment as a consequence of a
simulation event, e.g., a logic signal or a clock signal, to
which that callback function has been registered.

A task need not be registered with the system (e.g., to
provide a handle for a task), since the task is part of a section
of'a model and separate instances of a task are generated for
each instance of the section of the model.

Both tasks and callback functions can cause the event
scheduler to schedule simulation events to occur. A simula-
tion event can resume a task or invoke a callback function.

Callback functions disclosed herein provide increased
flexibility and efficiency as compared to methods and systems
currently in use. According to an embodiment, anything that
can be implemented by a task can alternately be implemented
by a callback function.

While one embodiment includes tasks and functions to
provide for the modeling described herein, an alternate imple-
mentation extends Verilog or other HDL to handle clock nets
and bus nets by providing native language primitives.

For the event scheduling function, and for description of
clock nets and how time is specified, and further, for a
description of how the scheduler is included, see U.S. Patent
Appl. Publ. No. 2006/0149526 titled CLOCK SIMULA-
TION SYSTEM AND METHOD, incorporated herein by
reference.

An example of hardware/software simulation and model-
ing is described in U.S. patent application Ser. No. 11/830,
435, filed Jul. 30, 2007 titled METHOD AND APPARATUS
FOR MODIFYING A VIRTUAL PROCESSOR MODEL
FOR HARDWARE/SOFTWARE SIMULATION, which is
incorporated herein by reference.

By way of example, this disclosure describes an embodi-
ment of a standard bus (StdBus) protocol engine and its
interface, when configured to operate in AXI Mode, that is,
when configured to simulate the AMBI AXJ bus protocol.
Detailed information about the StdBus protocol engine is not
provided herein, but a detailed description of the AXI inter-
face is provided in order to explain how device models
capable of communicating using the AXI protocol extensions
to StdBus can be developed, according to an embodiment of
the invention.

The AXI protocol is used herein only as an example. The
present invention is not limited to the AXI protocol. Those in
the art will understand, from the description herein, how to
modify and how to build bus models that model according to
other bus structures, including complex structures that allow
for several transactions at once. Other bus structures include,
for example, Opencore’s Wishbone bus, Sonic’s Silicon
Backplane (Motorola, Inc.), IBM’s CoreConnect, and so
forth. Features described herein are applicable to point-to-
point, many-to-many (i.e. the classic bus system), hierarchi-
cal buses, and/or even switched fabrics such as crossbar

10

15

20

25

30

35

40

45

50

55

60

65

10

buses, and how to modify the description herein for such other
application would be clear to those in the art.

Furthermore, the specific implementation herein is for the
modeling environment marketed by VaST Systems Technol-
ogy Corp. of Sunnyvale, Calif., and the invention is not lim-
ited to such a modeling environment. That is, features of the
present invention are described in terms of what is called a
System Engineering Environment (SEE) that is called
COMET and marketed by VaST Systems Technology Corp.
The SEE includes a graphical user interface which one uses to
design, build, and test virtual system prototypes. A typical
SEE such as COMET includes a workspace, an output win-
dow, a source file editor, and tools for building, configuring,
executing (or simulating), and debugging virtual system pro-
totypes. The invention, of course, is not limited to such an
environment.

The following is a glossary of some of the terms used to
describe embodiments of the present invention.

AMPI: Architecture modeling application programming
interface (API).

Architecture: A term applied to both the process and out-
come of designing and creating a specific technological prod-
uct, including its overall structure, behavior, logical compo-
nents, and logical interrelationships. An architecture may
contain instances of other architectures. By comparison, the
term design has less scope than architecture. An architecture
is a design, but most designs are not architectures. A single
sub-system or a new function has a design that has to fit within
the overall architecture. A similar term, framework, can be
thought of as the structural part of an architecture.

CIF: Communications and Infrastructure Fabric: a meth-
odology that allows one to design and specify fully execut-
able virtual system prototypes (virtual models of a hardware
system) that have desirable performance and accuracy.

Bus master: A model that can generate transactions to the
StdBus, but cannot receive transactions via the StdBus. A
virtual processor model (VPM) is a typical example of a bus
master although a VPM may also act as a bus master/slave.

Bus slave: A model that can receive transactions via the
StdBus, but cannot generate transactions to the StdBus.

Bus master/slave: A model that is capable of both receiving
from and generating transactions to the StdBus protocol
engine.

Device: A hardware unit that is capable of providing input
to a system or of receiving output from the system, or both.

Device model: A virtual representation of a hardware unit
that is capable of providing input to a system or of receiving
output from the system, or both. Device models (for example
VPMs, timers, controllers, and memory) are connected to the
bus. Any device model that is driven by target code must be
connected to the bus. A device model that does not connect to
the bus, such as aconsole or a test bench, is called an auxiliary
device.

Fabric module: A Communications and Infrastructure Fab-
ric module. See module.

Hardware constant: A fundamental entity of a module. The
value of a hardware constant cannot change.

Hardware value: The value of a hardware variable or hard-
ware constant.

Hardware variable: A fundamental entity of a module, such
as a register, wire, or integer. The value of a hardware variable
can change. Its value is the value last assigned to it.

Instantiation: The creation of an instance of an object
(module).

Latency: In a network, a synonym for delay, that is an
expression of how much time it takes for a packet of data to
get from one designated point to another. In a computer

US 9,311,437 B2

11

system, latency is often used to mean any delay or waiting that
increases real or perceived response time beyond the response
time desired. Specific contributors to computer latency
include mismatches in data speed between the microproces-
sor and input/output devices and inadequate data buffers.

Model: A self-contained module, such as a platform or
peripheral device. See module.

Module: The definition of a hardware element within a
virtual system prototype such as a virtual platform, a VPM, a
virtual bus, or a peripheral device. A module describes hard-
ware behavior, functionality, interconnection and hierarchi-
cal structure. Modules represent hardware elements and inter-
connections, and can be instantiated within other modules.
Each module generally (but not necessarily) describes a
single hardware subsystem.

Peripheral device: Any device that is not part of the essen-
tial system (the processor, memory, and data paths) but is
situated relatively close by. See device.

Ports: The connection points of a module. All modules
(including virtual platforms, VPMs, peripheral devices, and
virtual buses) communicate using ports.

Project: A set of files from which one builds a virtual
system prototype. A project may include source files, header
files, pre-built modules, DLL’s, include files, libraries, and
target software files.

Register: One of a small set of data holding places that are
part of a system and that provide a place for storing variable
data. Registers can have arbitrary names.

Software Development Environment (SDE): A graphical
user interface in which one can build interactive real-time
embedded software for target system architectures.

StdBus: The standard bus (StdBus) protocol engine is the
main component of a generic bus model that can be used for
device and module interconnect. The StdBus does not repre-
sent a specific proprietary bus protocol. It provides a generic
StdBus protocol, and emulation of proprietary protocols
including AHB, AHB_L.ite, and PCI.

System Engineering Environment (SEE): The graphical
user interface, in which one designs, builds and tests virtual
system prototypes. The present description is written in terms
of'a System Engineering Environment that is marketed by the
assignee of the present invention, and that is called COMET.
A typical SEE such as COMET includes a workspace, an
output window, a source file editor, and tools for building,
configuring, executing (or simulating), and debugging virtual
system prototypes.

Task function: A function written using the C language that
invokes architecture modeling API functions in order to inter-
act with module elements and interconnections.

Virtual hardware platform: See virtual platform.

Virtual platform (VP): The building block of a virtual sys-
tem prototype. A virtual platform may include one or more
virtual processors (that executes software embedded within
the product), peripheral devices, and interconnections, such
as buses. Virtual platforms can also contain other virtual
platforms in a hierarchical structure. Virtual platforms may be
interconnected.

Virtual processor model (VPM): A device model that simu-
lates the functionality of a hardware processor (CPU).

Virtual system prototype (VSP): The virtual representation
(or executable specification) of a hardware product that incor-
porates subsystem design together with the environment that
drives the execution (or simulation) of the virtual product. A
virtual system prototype includes one or more virtual plat-
forms, and (optionally) a test bench and performance and
analysis tools.

10

15

20

25

30

35

40

45

50

55

60

65

12

Workspace: The design area within the SEE being used,
e.g., the called COMET marketed by VaST Systems Technol-
ogy, Inc., the assignee of the present invention, where one
creates virtual system prototypes.

1.1 StdBus AXI Model

In the embodiments described herein, the StdBus protocol
engine when configured to use the AXI protocol connects a
single AXI bus master to a single AXI bus slave via a StdBus
net. The StdBus protocol engine can be considered as a con-
troller of this net and handles requests to and from the models
in this virtual platform.

The StdBus net can be considered as a communications
pathway containing address and data, along with control and
timing, information to be used in conjunction with the StdBus
protocol engine.

According to an embodiment, a single AXI port is repre-
sented by a read (R) and a write (W) port, so each AXI master
and slave device connects to the StdBus net using 2 separate
bus ports as shown in the following diagram. Two possible
bus configurations are shown in FIG. 1 where SBPE denotes
the StdBus protocol engine

The Merged bus configuration connects both the read and
write ports to a single instance of the StdBus protocol engine.
The SBPE is responsible for routing the read/write transac-
tions issued by the master to the appropriate slave read/write
port. This is the recommended bus configuration when using
StdBus AXI.

The split bus configuration uses a separate instance of the
SBPE for the read and write ports. Although this configura-
tion is compatible with StdBusl protocols (AHB_Lite for
example), it is not recommended for SBPE instances config-
ured as AXI.

Both port configurations are backwards compatible with
StdBusl protocols such as StdBus, AHB, and AHB_Lite—
assuming that the master and slave devices are capable of
connecting to a bus configured for one of these protocols.
According to an embodiment of the present invention, the
methods, systems, and computer program products disclosed
herein ensure that the slave properly handles exclusive bus
accesses when using the split bus configuration.

According to some embodiments of the invention, a bridge
model can also be inserted between two instances of the
StdBus protocol engine to perform protocol translation as
shown in FIG. 2. This allows devices of different bus proto-
cols to communicate with each other.

One of the most common configurations makes use of an
AXIinterconnect to route transactions between multiple mas-
ters and multiple slaves as shown in FIG. 3.

1.2 StdBus Protocol Engine

In embodiments described herein, the StdBus protocol
engine (SBPE) controls the operation of the StdBus net, and
manages the communication path between the device models
connected to the StdBus net. The convention of bus master is
used when a model can generate transactions to the StdBus
(such as a virtual processor model) and bus slave is used when
amodel can receive transactions via the StdBus. In keeping to
the AMBA AXI protocol, the StdBus AXI protocol does not
support combined master/slave AXI bus ports on devices.

When configured as AXI protocol, in an embodiment, the
StdBus protocol engine does not perform any address decod-
ing for timed transactions. When a master issues a timed
transaction on the bus, the only transaction decoding per-
formed by the SBPE is to determine whether to route the
transaction to the slave’s read or write bus port.

In one embodiment, the SBPE performs the following
functions: the SBPE handles the routing of transactions gen-
erated by a master device to the appropriate slave device read

US 9,311,437 B2

13

orwrite AXI bus port; the SBPE handles registration of device
decode regions by slave devices for the purpose of passing
this information to master devices which may then use this
information to automatically initialize and maintain their
internal address decoding of transactions to the master device
port. This decoding is also used internally by the SBPE for
routing untimed StdBus transactions.

The SBPE also: handles the registration of slave callback
functions to handle various transaction types on the bus such
as read, write, and fetch etc; optionally intercepts master and
slave callback functions to check for StdBus AXI protocol
compliance; supports StdBus Metrix For the AXI protocol
events; and supports StdBus debug transaction Tracing for the
AXI protocol.

In addition to the above, in one embodiment, the StdBus
AXI model implements the AXI read address, write address,
read data, write data, and write response channels using mas-
ter and slave callbacks embedded in each transaction.

The timed bus protocols supported by the SBPE may be
separated into two groups; StdBus type 1 (StdBusl) and
StdBus type 2 (StdBus2), as shown in table 1.

TABLE 1

Timed bus protocols supported by the SBPE

StdBus protocol name StdBus protocol type

StdBusProtocol StdBus1
PciProtocol StdBus1
AhbProtocol StdBus1
ApbProtocol StdBus1
IBusProtocol StdBus1
HpbProtocol StdBus1
AxiProtocol StdBus2

Intable 1, the protocol names suggest the type of protocol.
Therefore AxiProtocol is the AXI protocol, PciProtocol is the
PCI protocol, etc.

In accordance with an embodiment of the present inven-
tion, the operation of the SBPE is quite different for the two
protocol types. Certain embodiments of the present invention
focus primarily on developing devices for the AXI protocol,
called AxiProtocol in table 1, but devices that can connect to
an instance of SBPE configured as either AXI or one of the
StdBusl protocols are also disclosed herein.

In accordance with an embodiment of the present inven-
tion, all untimed transactions follow the same StdBus
untimed transaction protocol, regardless of the protocol set-
ting used for timed transactions.

1.3 StdBus Protocol Engine Interface for Type 2 Protocols

According to an embodiment of the present invention, the
StdBus protocol engine (SBPE) interface, along with the
StdBus net, provides the communication path between a pair
of devices (one master, one slave) in a particular virtual plat-
form and includes the following:

A set of API functions, which can be used within the slave
and master device models to request services from the SBPE.

A set of callback functions, which the SBPE uses to notify
the slave and master device models about the progress of the
StdBus transactions.

A bus transaction data structure which includes the
address, data, control and timing information which is used
by both the master and the slave device models to execute the
transaction.

In one embodiment, the SBPE communicates via StdBus
ports connected to a StdBus net type to the appropriate ports
on the slave and master device models. The SBPE can be
considered a model in itself and is shown in FIG. 4.

10

15

20

25

30

35

40

45

50

55

60

65

14

1.4 StdBus Protocol Engine Model

In accordance with an embodiment of the present inven-
tion, the port connections “Bus Port” and “Bus Clock OUT
Port,” shown in FIG. 4, represent the common connection
ports of the master and slave devices connected to this par-
ticular instance of the StdBus. Effectively the master and the
slave connected to the bus must provide a means of connec-
tion to these ports and must be connected via an appropriate
net type.

1.5 Device Models

In one embodiment, a StdBus AXI device model connects
to a single instance of a StdBus net via separate read and write
StdBus ports. Each connection to a StdBus net may be of the
form master or slave—this detail is established in the struc-
tural description of the model.

The following sections describe device models from either
a master device model or a slave device model perspective.
1.6 Master Device Model

As used herein, a master device model is a device model
capable of issuing transactions on to a StdBus net. It provides
the transaction data structure and issues the request for a
transaction to the StdBus protocol engine. Master device
connections are typically established by virtual processor
models (VPMs), DMA devices and bus bridges. The master
device may be responsible for:

Creating the bus transaction data structure which includes
the CommandUsed, DataAvailable or DataUsed and Respon-
seAvailable call back functions for use by the slave device.

Requesting (or issuing) a transaction to the StdBus proto-
col engine. This includes initiating the timeline for the trans-
action by initializing the command available and Now Tick-
Stamp fields in the bus transaction data structure.

Responding to callbacks from the slave device (e.g., com-
mand used, Response available) and updating the transaction
data structure as necessary.

In addition, a master device model may register with the
StdBus protocol engine a call back function to receive noti-
fication, for automatic routing purposes, of the address
decode regions registered by the connected slave StdBus
ports.

1.7 Slave Device Model

As used herein, a slave device model is a device model
capable of receiving and processing transactions from a Std-
Bus net. It receives transactions issued by a master device
model and routed via the StdBus protocol engine. Device
slave connections are typically established by bus bridges,
memory, and I/O devices. The slave device model may be
responsible for:

Registration of its address decode regions onto the bus
(protocol engine).

Registration of various call back functions to be called by
the StdBus protocol engine when a transaction is to be passed
to the slave device.

Responding via these registered call back functions to a
transaction which is received from the StdBus protocol
engine and processing the transaction.

Updating the transaction timing associated with the access
timing of the slave device.

Invoking the appropriate callback functions within the
transaction data structure to facilitate the command, data or
response handshaking process with the initiating master
device.

2.0 StdBus AXI Transaction Data Structure

In an embodiment, the main communication mechanism
between modules on a StdBus is the StdBus transaction data

US 9,311,437 B2

15

structure. An overview of this structure is now presented.
More details are provided in subsequent parts of the descrip-
tion.

In another embodiment, the transaction data structure is
“owned” by the bus master and is updated and modified as and
when required by the bus protocol engine and the slave. FIGS.
5 and 6 depict the basic mechanism for StdBus AXI protocol,
single data payload, read and (early data) write transactions.
2.1 Transaction Data Structure Detail

According to an embodiment of the present invention, the
master module on the bus “owns” the data structure and
effectively passes a pointer to the StdBus protocol engine
which in turn passes this pointer to the slave module. Tick
stamps in the transaction data structure are bus clock periods
relative to the bus clock input of the StdBus protocol engine
module.

How each of the fields are modified and used in a bus
transaction sequence in one embodiment, is described in
some detail in later sections of this disclosure.

2.2 Typical Timed Bus Transactions

FIG. 7 shows a typical AXI protocol timed bus transaction
700. Inthis casea ‘read’ transaction is issued by master device
744 as request 750 to slave device 748 and the FIG. 7 depicts
the interaction of StdBus protocol engine 730 as well as the
handling of the Tick stamps to reflect timing of the transac-
tion. In this particular example, slave device 748 returns all
the data as a single data payload.

FIG. 7 illustrates the flow of a single transaction. In accor-
dance with an embodiment of the present invention, a single
transaction may include multiple data payloads, each in turn
including one or more data beats forming a burst transaction.
2.3 Typical Untimed Bus Transactions

In one embodiment, for the purpose of supporting target
debugging, the StdBus protocol engine, the bus master and
the bus slave support untimed transactions. These types of
transactions are very similar to the timed transactions shown
in the previous sections. The main difference is that they have
no requirement for timing updates and do not involve invo-
cations of callback functions.

FIG. 8 shows an example untimed read transaction 800,
according to an embodiment of the invention. As depicted in
FIG. 8, no timing information is required for this transaction,
and no handshaking (via available/used callbacks) occurs
between the master device 844 and slave device 848. Untimed
StdBus transactions are protocol independent. During an
untimed transaction, the data length may be variable from the
target debugger; therefore slave device’s 848 registered
untimed functions should be able to handle variable length
transactions. This is discussed further in the following sec-
tions.

Although in this embodiment, the Standard Bus Protocol
Engine 830 (SBPE) (configured for AXI) does not perform
address decoding for timed transactions, address decoding is
performed for untimed transactions. According to this
embodiment, to remove ambiguity, AXI slave read and write
ports should not both register for the same read, write, load or
fetch decode regions as only the first one decoded will be
passed the untimed transaction. Other alternate embodiments
can deal with address decoding in other situations.

3.0 StdBus AXI Slave Device Modeling

This section describes how, in one embodiment, a bus
interface can be created on a slave device from initialization
through to the API function registration and callback mecha-
nisms involved. FIG. 9 shows a representation 900 of slave
device 930 showing some StdBus ports such as read bus port
938 and write bus port 940. A typical slave device 948 is
represented in FIG. 9 showing the architecture modeling API
port connections necessary to achieve communications with
the StdBus AXI protocol engine. Only one set of AXI slave

10

15

20

25

30

35

40

50

55

60

65

16

related ports 932 of the slave device are shown here for the
purpose of demonstration, but slave device 930 may have
many other ports such as Reset, Logic Drivers, and others not
depicted in FIG. 9.

3.1 Slave Device Bus Interface

In an embodiment, the slave device bus interface may be
described using some of the tools that are included in the
COMET System Engineering Environment. FIG. 10 shows
such a description 1000. Description 1000 is illustrated is in
terms of a high level view of the connections available to other
modules. The necessary connections and properties are
described below in this example of slave device 1030. This by
no means represents a comprehensive list but is for demon-
stration purposes only, and for the COMET implementation
described herein as an example.

The following list breaks slave device 1030 down into its
constituent parts in the example implementation described
herein and depicted in FIG. 10:

Parameters:

StartAddress: user-defined name of the base address of the
slave device which forms the start of the decode region for
this device on the bus.

Timing: user-defined names for the read and write timing
in bus clock ticks, for the slave to complete a bus width of data
in a transaction.

Ports:

SlaveReadBusClock 1034: user-defined name of the input
used for the read bus clock signal

SlaveReadBus 1038: user-defined name of the slave input
for the read StdBus net type signal

SlaveWriteBusclock 1035: user-defined name of the input
used for the write bus clock signal

SlaveWriteBus 1040: user-defined name of the slave input
for the write StdBus net type signal

Tasks:

SlaveReadBusclock 1031: Declaration of the slave view on
the read bus clock net input port

SlaveReadBus 1039: Declaration of the slave view on the
read StdBus net port

SlaveWriteBusClock 1037: Declaration of the slave view
on the write bus clock net input port

SlaveWriteBus 1041: Declaration of the slave view on the
write StdBus net port
3.2 Slave Device Instance Structure

As part of the module modeling methodology used in the
example embodiments described herein, a model has an
instance structure associated with it. This instance structure
represents a view of the device and data storage elements. In
one embodiment, it is in this instance structure that handles
are created and stored for each of the architecture modeling
API ports on the module interface. An example of this is
shown below.

/*

** instance data structure
*/

struct sInstanceData

{
tWord32 SlaveReadBusWidth;
tWord32 SlaveWriteBusWidth;

const tAmpiClockHandleSlave

const tAmpiClockHandleSlave

const tAmpiStdBusHandleSlave

const tAmpiStdBusHandleSlave
tVastSampleAxiSlaveDeviceParameters

}

*pSlaveReadBusClock;
*pSlaveWriteBusClock;
*pSlaveReadBus;
*pSlaveWriteBus;
Config;

According to an embodiment of the present invention, the
handles created and stored in the instance structure are then
used in the model as references to the bus connections.

US 9,311,437 B2

17

3.3 Initialization

In an embodiment, the initialization of the model is in
essence where the connection is made between the user-
defined software handle and the user-defined architecture
modeling API port names that represent the hardware con-
nections. In one embodiment, the initialization of the module
task is defined in the model function:
<modelname>InitTaskInstance. The following example
shows how in one embodiment, the handles connect to the
hardware variable name.

18

IP->pSlaveReadBusClock = AmpiClockInitSlavePortView(“SlaveReadBusClock™, “All”);
IP->pSlaveWriteBusClock = AmpiClockInitSlavePortView(“SlaveWriteBusClock”, “All”);
IP->pSlaveReadBus = AmpiStdBusInitSlavePortView(“SlaveReadBus”, “All”);
IP->pSlaveWriteBus = AmpiStdBusInitSlavePortView(“SlaveWriteBus”, “All”);

The first two lines use the architecture modeling API func-
tion, AmpiClocklnitSlavePortView, to define the clock as an
input to the slave device for the read and write buses. The
actual name of the hardware architecture modeling API port
defined in the model structure is used to reference the handle
which is then stored in the instance structure.

The third and fourth lines use the architecture modeling
API function, AmpiStdBusInitSlavePortView, to define the
read/write buses as slave connections to the slave device and
the actual name of the hardware architecture modeling API
port defined in the model structure is used to reference the
handle which is then stored in the instance structure. Only
some of the Architecture modeling programming interface
functions are described herein.

3.4 Registration of StdBus Connection

In order to connect to a StdBus, one embodiment includes
gathering some information about the bus connections avail-
able. When connected in a platform, in an embodiment, it is
possible to establish the data width of the slave port StdBus
connections using the following architecture modeling API
function call, AmpiStdBusSlaveGetDataWidth.

20

25

30

35

This can be used by the model to establish valid connection
parameters or to calculate timing for multiple data phase
transactions. In the case of the function above, the function
will return the bit width of the data portion of the buses
referenced by their handles and the user variables SlaveRead-
BusWidth and SlaveWriteBusWidth will store the width of
the buses in bytes in the instance structure.

In one particular embodiment, the StdBus, set to AXI, is
only capable of connecting to AXI slave device models at the
same data width. While other embodiments can be made that
are different, having the same data width follows the AXI
protocol which requires that the AXI master and slave devices
share a connection at a known data width. In accordance with
the limitations of the AXI protocol, one embodiment of Std-
Bus also constrains the possible slave AXI connection data
widths to between 1 and 128 bytes.

In one embodiment, the AXI slave connects to the bus
using the correct type (read or write) and data width. The
following example code demonstrates the use of the AmpiSt-

IP->SlaveRead BusWidth = AmpiStdBusSlaveGetDataWidth(IP-> pSlaveReadBus) / §;
IP->SlaveWriteBusWidth = AmpiStdBusSlaveGetDataWidth(IP-> pSlaveWriteBus) / 8;

dBusSlaveSetConnectType architecture modeling API func-
tion call to connect the read and write buses.

switch (IP-> SlaveReadBusWidth)

case 128: AmpiStdBusSlaveSetConnectType(IP->pSlaveReadBus, AxireadD1024V1connecttype); break;
case 64: AmpiStdBusSlaveSetConnect Type(IP->pSlaveReadBus, AxireadD512V1connecttype); break;
case 32: AmpiStdBusSlaveSetConnect Type(IP->pSlaveReadBus, AxireadD256V 1connecttype); break;
case 16: AmpiStdBusSlaveSetConnect Type(IP->pSlaveReadBus, AxireadD128V1connecttype); break;
case 8: AmpiStdBus SlaveS etConnect Type(IP->pSlaveReadBus, AxireadD64V 1 connecttype); break;
case 4: AmpiStdBusSlaveSetConnectType(IP->pSlaveReadBus, Axiread D32V 1connecttype); break;
case 2: AmpiStdBusSlaveSetConnectType(IP->pSlaveReadBus, Axiread D16V 1connecttype); break;
case 1: AmpiStdBusSlaveSetConnectType(IP->pSlaveReadBus, AxireadD8V1connecttype); break;

switch (IP-> SlaveWriteBusWidth)

case 128: AmpiStdBusSlaveSetConnectType(IP->pSlaveWriteBus, AxiwriteD1024V 1 connecttype); break;
case 64: AmpiStdBusSlaveSetConnect Type(IP->pSlaveWriteBus, AxiwriteD512V 1connecttype); break;
case 32: AmpiStdBusSlaveSetConnect Type(IP->pSlaveWriteBus, AxiwriteD256V 1connecttype); break;
case 16: AmpiStdBusSlaveSetConnect Type(IP->pSlaveWriteBus, AxiwriteD128V 1connecttype); break;
case 8: AmpiStdBus SlaveSetConnectType(IP->pSlaveWriteBus, AxiwriteD64V 1 connecttype); break;
case 4: AmpiStdBusSlaveSetConnectType(IP->pSlaveWriteBus, AxiwriteD32V1connecttype); break;
case 2: AmpiStdBusSlaveSetConnectType(IP->pSlaveWriteBus, AxiwriteD16V1connecttype); break;
case 1: AmpiStdBusSlaveSetConnectType(IP->pSlaveWriteBus, AxiwriteD8V1connecttype); break;

}

US 9,311,437 B2

19 20
This function call indicates to the SBPE that the slave parameter is the user-defined slave function responsible for
device wants to connect to it uSing the AXI read or write handhng a particular type of command that can be issued on

protocol, and uses the bus widths determined earlier to deter-
mine the AXI data width.

To design a slave device that can connect to either an AXI 5
or a StdBus1 protocol net, according to an embodiment, the

the StdBus. The instance pointer for this slave is also passed
and the final parameter is the decode command which is
associated with the slave function.

slave should check the return code of AmpiStdBusSlaveSet- In order for the slave device model to handle a target
ConnectType and attempt to connect using another protocol debugger interface, in one embodiment, the untimed func-
as shown below. tions are also required to be registered with the SBPE. Only

Status = AmpiStdBusSlaveSetConnect Type(IP->pSlaveWriteBus, AxiwriteD32V1 connecttype);
if (Status == AmpiStatusFail)

Status = AmpiStdBusSlaveSetConnect Type(IP->pSlaveWriteBus, StdBusV1 connecttype);

The above code example shows a device that can connect to some architecture modeling API functions are described
either a 4 byte wide AXI protocol or any width StdBus pro- herein.
tocol configured StdBus net. In another embodiment, itisup 20 According to an embodiment, each slave callback function

to the slave to note which connection succeeds and to then is associated with a StdBus command during the registration
store the protocol of the StdBus instance that it connected to, process, and each StdBus command has one associated
and if also variable, the bus width connection at which the decoder. More than one StdBus command may use the same
connection was established, so that it may respond appropri- decoder. Below is a list of commands which are associated
ately to transactions when they are received. 25 with the commonly used device decoders:
3.5 Registrations of StdBus Callbacks Read decoder (readdecodeMask) has associated Read
In accordance with an embodiment of the invention, Std- Operation (readOp); Untimed read Operation (readUntime-
Bus transactions take the form of callbacks to the slave from dOp). Write decoder (writedecodeMask) has associated
the master either directly, or, via the StdBus protocol engine. Write Operation (writeOp); Untimed write Operation (write-

In one embodiment, when a bus master device makes a 30 UntimedOp). Instruction fetch decoder (fetchdecodeMask)
request for a transaction to the StdBus protocol engine, the has associated Fetch Operation (fetchOp); and Untimed fetch

protocol engine interrogates the type of transaction and routes Operation (fetchUntimedOp).

it to the appropriate slave read or write bus port. In another In one embodiment, if a slave device registers to accept

embodiment, the SBPE does not perform address decoding transactions from a particular decoder, then it must also reg-

for timed AXI transactions. Pre-registered callbacks by the 35 ister the appropriate callbacks to handle each of the StdBus

slave enable the protocol engine to call the appropriate func- commands which utilize that decoder.

tions in the slave so that the transaction may proceed and data The following steps outline how in one embodiment, the

can be transferred. SBPE uses the decoder embedded within a transaction to
In one embodiment, this callback registration is handled route the transaction issued by a master to a slave.

via architecture modeling API function calls from the task 49 1) Master issues a command in the form of a transaction.

Initialization function <modelname>InitTaskInstance of the The type of command is set in the command subfield of the

slave device model. The following example shows how to transaction data structure (e.g., readOp, writeUntimedOp,

register the callbacks with the StdBus protocol engine. fetchOp, etc).

AmpiStdBusRegisterCommand(IP->pSlaveReadBus, _slavetimedreadaccess, IP, readOp);
AmpiStdBusRegisterCommand(IP->pSlaveWriteBus, _slavetimedwriteaccess, IP, writeOp);
AmpiStdBusRegisterCommand(IP->pSlaveReadBus, _slaveuntimedreadaccess, 1P, readUntimedOp);
AmpiStdBusRegisterCommand(IP->pSlaveWriteBus, _slaveuntimedwriteaccess, IP, writeUntimedOp);

50
In one embodiment, slave devices that provide regions 2) The SBPE uses the command subfield to determine
from which instructions may be executed must also register which decoder to use for this transaction. The decoder and
callbacks for the fetch decoder. Fetch transactions are routed command type determine the slave callback function for this
to the same bus port as read transactions, and in the simplest transaction, which is ultimately called by the SBPE.
case can be handled by the slave in the same way as a data 55 3) For timed StdBus type 1 protocol transactions and
read. untimed transactions, the decoder is also used with the regis-

AmpiStdBusRegisterCommand(IP->pSlaveReadBus, _slavetimedreadaccess, IP, fetchOp);
AmpiStdBusRegisterCommand(IP->pSlaveReadBus, _slaveuntimedreadaccess, IP, fetchUntimedOp);

In another embodiment, the architecture modeling API tered slave device regions to perform address decoding of the
function, AmpiStdBusRegisterCommand, performs the call- transaction to a particular slave.
back registration. The first parameter passes the StdBus slave ¢5 4) For timed AXI (StdBus type 2) protocol transactions,
handle (or pointer) that this slave device is referencing any transactions issued by the connected AXI master’s read or

(IP—pSlaveReadBus or IP—pSlaveWriteBus). The next write master StdBus ports are issued to the corresponding

US 9,311,437 B2

21

connected AXI read or write slave port. No address decoding
is performed.

3.6 Registrations of Slave Device Decoders

According to an embodiment, the addressable region of the
slave device is registered with the StdBus protocol engine.
Although in one embodiment, the SBPE in AXI protocol
mode does not perform address decoding, slave devices
should still register their decode range for various reasons.
For example:

1) To maintain backwards compatibility if the slave device
is to connect to a bus net representing a more conventional bus
protocol, e.g., a non AXI protocol.

2) To support untimed accesses. In one embodiment, the
SBPE performs address decoding for untimed accesses.

3) Masters can set up a callback to be notified when a slave
registers a decode region. This allows masters to perform
automatic address decoding and routing.

In another embodiment, decoder registration is handled via
an architecture modeling API function call from the task
Initialization function <modelname>InitTaskInstance of the
slave device model. The following example shows how to
achieve this in one embodiment.

AmpiStdBusRegisterDecodeRange(IP->pSlaveReadBus, readdecodeMask,
IP->Config.StartAddress, DEVICE_SIZE);

AmpiStdBusRegisterDecodeRange(IP->pSlaveWriteBus, writedecodeMask,
IP->Config.StartAddress, DEVICE_SIZE);

Slave devices that provide regions from which instructions
may be executed must also register a decode range for the
fetch decoder as shown below.

AmpiStdBusRegisterDecodeRange(IP->pSlaveReadBus,
fetchdecodeMask,
IP->Config.StartAddress, DEVICE__SIZE);

In an embodiment, the architecture modeling API function,
AmpiStdBusRegisterDecodeRange, performs the decoder
registration. The first parameter passes the StdBus handle (or
pointer) of the bus port connection that this slave device is
referencing (IP—pSlaveReadBus or IP—pSlaveWriteBus).
The next parameter selects one or more decoders by OR-ing
together their respective bit masks. In this case, the read
decoder is used on the slavereadBus, and the write decoder is
used on the slavewriteBus. The various decoder Masks are to
be used for both decoder registrations and are defined in a file
called ampi_stdbus_types.h in one specific implementation.

The third and fourth parameters are the base address and
length of the address region to be decoded by the selected
decoders to the slave device. In this case, in an embodiment,
the StartAddress parameter is retrieved and passed from the
model configuration parameters in the interface. This allows
the base address of the device to be modified at configuration
time to facilitate repositioning of the slave device within the
memory Map.) Multiple address ranges can be registered if
required by the slave device architecture.

In one embodiment, timed transactions are routed by the
SBPE as follows:

If the bus connection is merged, and the protocol set to
AXI, then transactions received from the master’s read and
write ports are routed, through the appropriately registered
slave port function, to the slave’s read and write ports respec-
tively, regardless of the decode region registrations.

10

15

20

25

30

35

40

45

60

22

If the bus connection is merged, and protocol is not set to
AXI, then the destination of each transaction depends entirely
on the decode region registrations—which are not allowed to
overlap.

Similarly, if the bus connection is split (and hence should
not be set to AXI protocol), then the transactions are always
routed based entirely on the decode region registrations.

Untimed transactions are always routed based entirely on
the decode region registrations.

3.7 AXI Subcommand Handling

According to an embodiment of the invention, with refer-
ence to the TransProtocol field in the transaction data struc-
ture, this can be verified for each transaction to ensure that the
correct protocol has been adhered to. According to an
embodiment, it is the responsibility of the master device to set
this and can be verified as each transaction is received by the
slave.

In an embodiment, contained within the Command32 vari-
able in the transaction data structure is the SubCommand
structure which indicates information specific to the protocol
type of the transaction about to commence. When the SBPE
calls the AXI slave device bus access function, it is at this
point that the slave device can interrogate the transaction and
respond appropriately. The SubCommand field of Com-
mand32 can be accessed specifically as follows.

pBusTransaction—=SubCommand

In brief, in an embodiment, the SubCommand field in an
AXI transaction contains the following information.

AXI burst Size, which determines the size of the transfer
per beat of the burst.

AXI burst type, which determines the address changes for
each beat of the burst.

AXI burst Length, which determines the number of beats in
the burst.

These values are encoded and the actual values may be
determined from a header file, called ampi_stdbus_types.hin
the specific COMET implementation, which details the
appropriate enumerations, masks, and offsets.

3.8 AXI Burst Size

In one embodiment, the SubCommand field contains infor-
mation about the AXI burst Size of the transaction. These
enumerated values are listed below.

AxiSize8Bits =0,
AxiSizel 6Bits =1 ,
AxiSize32Bits = 2,
AxiSize64Bits = 3,
AxiSizel28Bits = 4,
AxiSize256Bits = 3,
AxiSize512Bits = 6,
AxiSizel024Bits =7

/* 8 bit wide transfer */

/* 16 bit wide transfer */
/* 32 bit wide transfer */
/* 64 bit wide transfer */
/* 128 bit wide transfer */
/* 256 bit wide transfer */
/* 512 bit wide transfer */
/* 1024 bit wide transfer */

The following Code Fragment demonstrates how to extract
the size in bytes from the SubCommand field.

AxiSize = ((tWord8)(pBusTransaction—>SubCommand &

AxiSubCommandSizeMask)) >>
AxiSubCommandSizeOffset;

TransferSize = 1 << AxiSize;

The AxiSize variable contains the enumerated code for the
transfer size. In this case the TransferSize value is calculated
from the enumerated type, and represents the size of each beat
in bytes.

Inthe example implementation, not all slave device models
may be able to process all sizes of transactions. It is up to the

US 9,311,437 B2

23

implementation as to what action to take when the size of the
transaction has been established. Also, depending on the bus
connection width certain combinations may result in illegal
conditions and should be reported as an error condition if
generated by a master device.
3.9 AXI Burst Type

The SubCommand field also contains information about
the AX1 burst type. These enumerated values are listed below.

AxiBurstInerOrWrap = 0,
AxiBurstFixed = 1

/* Incrementing or Wrapping */
/* Fixed address */

The following code fragment demonstrates how to extract
this information from the SubCommand field:

BurstType=((tWord8)(pBusTransaction—SubCommand

& AxiSubCommandBurstTypeMask))>>AxiSubCom-
mandBurstTypeOffset;

Not all slave device models may be able to process all type
of transactions. It is dependent upon the individual device
specification as to what action to take when the burst type has
been established.

3.10 AXI Burst Length

In accordance with an embodiment of the invention, the
final piece of AXI burst information contained in the Sub-
Command field is the AXI burst length. These enumerated
values are listed below.

AxiBurstLengthl =0,
AxiBurstLength? = 1,
AxiBurstLength3 = 2,
AxiBurstLength4 = 3,
AxiBurstLengthS = 4,
AxiBurstLength6 = 5,
AxiBurstLength7 = 6,
AxiBurstLength8 = 7,
AxiBurstLength9 = 8,
AxiBurstLengthl0 =9,
AxiBurstLengthl1 = 10,
AxiBurstLengthl2 =11,
AxiBurstLengthl3 =12,
AxiBurstLengthl4 = 13,
AxiBurstLengthl5 = 14,
AxiBurstLengthl 6 = 15

The following code fragment demonstrates how to extract
this information from the SubCommand field:
NumBeats=1+((tWord8)
(pBusTransaction—SubCommand & AxiSubCom-
mnandBurstLengthMask))>>AxiSubCommandBurst-
LengthOffset;
3.11 Burst Transactions, Beats and Slave Access Widths
In one embodiment, the burst length and transfer size per
beat of the burst are used to determine the timing of the bus
transaction. For example, if the burst length is AxiBurst-
Length4 (e.g., there are 4 beats in the burst) and if the transfer
size per beat of the burst is AxbSize32 Bit (e.g., 4 Byte size of
each beat), then the total amount of ticks used by the device
for this bus transaction is 4 cycles (assuming that each data
phase takes 1 cycle). This also assumes that the StdBus net, to
which the slave device StdBus port is attached, has a data
width connection which is no smaller than 4 bytes wide. This
is because in one embodiment, the burst size is not allowed to
exceed the physical bus width.
3.12 Timed Slave Transaction Handling
The AXI protocol defines 5 independent channels used to
transfer data and control information between master and
slave devices. The channels are:

5

10

15

20

25

30

35

40

45

50

55

60

65

24

read address (master to slave); read data (slave to master);
write address (master to slave); write data (master to slave);
and write response (slave to master).

According to an embodiment, each channel uses a simple
VALID/READY handshaking sequence to transfer the
address/data/response information between the two devices.
For example, for the write data Channel, the AXI master
drives the write data and the write data Valid signals. The AXI
slave asserts the write data Ready signal to indicate that the
write data has been received—the master is now free to drive
the next beat of data onto the Channel.

In another embodiment, StdBus for AXI virtualizes this
process using callback functions registered by the master/
slave in the StdBus transaction data structure. It also allows
the aggregation of data beats into one or more data Payloads,
each including one or more data beats. Table 2 shows the
relationship between the AXI protocol valid/ready signals,
and the StdBus AXI callback function of one implementation.

TABLE 2

Relationship between AXI protocol valid/ready signals and the
StdBus AXT callback function

signal name callback funtion (Owner) called By

read address read bus access registered function (slave) SBPE

VALID

read address pBusTransCommandUsed (master) slave

READY

read data VALID pBusTransDataAvailable (master) slave

read data READY pBusTransDataUsed (slave) master

write address write bus access registered function (slave) SBPE

VALID

write address pBusTransCommandUsed (master) slave

READY

write data VALID write bus access registered function (slave) master
and, or, pBusTransDataAvailable (slave)

write data pBusTransDataUsed (master) slave

READY

write response pBusTransResponseAvailable (master) slave

VALID

write response pBusTransResponseUsed (slave) master

READY

In the AXI protocol, all AXI transactions are treated as
burst transactions, with a single data transfer represented as a
burst with a single beat in the burst.

3.13 Slave Read Access

The following describes how in one embodiment, as will be
further described with respect to FIG. 12, an AXI slave pro-
cesses a timed read transaction:

1) The master issues transaction; it is decoded by the
SBPE, and routed to the slave’s read bus port by calling the
slave’s registered read access function. The master has set the
CommandAvailableTickStamp (CATS) to indicate the time at
which the transaction was initiated, or in AXI terms, the clock
edge at which read command valid signal is asserted. This
marks the start of the address phase.

2) If the slave cannot process the transaction at this time,
for example, if it is busy with a previous transaction, then the
transaction is queued. The queuing mechanism is the slave’s
responsibility. The slave will not receive another transaction
through its read slave port until it calls pBusTransCom-
mandUsed for this transaction.

3) When the slave is ready to process the transaction, it sets
Command UsedTickStamp (CUTS) to indicate the time at
which the transaction was accepted. This marks the end of the
address phase.

4) The slave calls pBusTransCommandUsed (Com-
mandUsed) for this transaction. This, together with the

US 9,311,437 B2

25

CUTS, represents the sampling of the READY signal on the
AXlread address channel, and indicates to the master that the
channel is free, and the slave’s read port is ready to accept
another transaction. Slaves must not call CommandUsed until
they can process another transaction on the slave’s read port.
Within the CommandUsed callback, the master may issue
another transaction, which would be routed to the slave before
the original CommandUsed function returned.

5) The slave sets pSourceBuffer to point to the data to be
returned, and sets pBusTransDataUsed to point to the slave’s
DataUsed callback function.

6) The slave considers whether the (remaining) data will be
delivered as one or more payloads, and sets the length of the
data payload to be returned. Each payload can represent one
or more data beats.

7) The slave increments DataAvailablel.ength by the new
data payload length, updates DataAvailableTickStamp, sets
Status in the transaction data structure and calls pBusTrans-
DataAvailable. The DataAvailableTickStamp should be setto
the clock edge at which the first beat in the new data payload
is made available.

8) The master reads slave response (Status), reads the new
data from pSourceBuffer, sets DataUsedlength=
DataAvailableLength, sets DataUsedTickStamp, and calls
pBusTransDataUsed. If no more data is to be transferred, for
example, in the case of a single data payload, the transaction
is now complete. Otherwise, the slave repeats Steps 6 and 7
and the master repeats Step 8 for each of the remaining
payloads in the transaction.

The slave may have received another transaction from the
master as soon as CommandUsed was called, that is, before
the original transaction was completed. It is up to the slave to
ensure that transactions are buffered or queued appropriately.

The AXI protocol allows the slave to return a different
response for each beat in a read burst transaction. For
example, for aburst of 4 beats, the slave may return OKAY for
3 beats, and SLVERR (indicating, “slave error”) for one beat.
Each time the slave calls the master’s DataAvailable function,
it can set the Status field in the transaction data structure to
indicate the desired response. If returning more than one data
beat in a data payload with differing responses, the slave
device should either split the data payloads according to the
different responses, or return each beat as a separate payload
with each response signaled individually.

In one embodiment, and as per the AXI protocol, even if an
error occurs in the middle of a burst, the slave must continue
with the burst until all beats have been processed. For
example, if in a 16 beat transfer, an error occurs after beat 6,
the slave must continue with the transfer for the remaining 10
beats (setting Status to SLVERR for each, or returning the
remaining beats as one data payload of 10 beats with
SLVERR set).

FIG. 11 shows the timing of each of the two channels
involved in a timed AXI read transaction 1100, in accordance
with one embodiment of the present invention.

10

15

20

25

30

40

45

50

26

Transaction 1100 has two data payloads 1168. Itis up to the
slave to determine how many data beats 1173 form a data
payload 1168, and to return a payload 1168 each time it
invokes the master’s DataAvailable function, with the follow-
ing restrictions:

The start and end of each payload 1168 must either be the
start or end bytes of the transaction or at a beat-aligned bound-
ary in-between.

The slave must limit the data payload length to correspond
to the number of beats of data it can guarantee that it is capable
of delivering on contiguous clock cycles. For example, if the
slave needs to insert a delay between beats, it must limit each
data payload 1168 to one data beat and return each payload
separately (i.e., with successive calls to pTransDataAvail-
able).

FIG. 12 provides a flowchart 1200 describing a simple
example implementation of an AXI slave that can process
read transactions. Flowchart 1200 includes a transaction
queue of size=1.

The process starts at step 1252 where the Standard Bus
Protocol Engine (SBPE) calls the slave device’s decode func-
tion.

In step 1253, it is determined whether the slave device is
busy with a read. According to an embodiment, if the slave
device is not busy, CUTS will be set and the slave device will
call the master device’s CommandUsed function in step 1271
as described below, but if the slave device is busy, the trans-
action is queued in step 1255.

The process continues in step 1271, in which the slave
device calls the master device’s CommandUsed function.

In step 1276, it is determined whether the slave device has
return data to process. According to an embodiment, if the
slave device has data to process, DATS and DAL will be set
and the slave device will call the master device’s DataAvail-
able function in step 1273 as described below, but if the slave
device does not have data to process, the queue is checked in
step 1278.

In step 1278, it is determined whether the slave device’s
queue is empty. According to an embodiment, if the queue is
empty, the process ends in step 1280, but if the queue is not
empty, control returns to step 1271 where CUTS is set and the
master device’s CommandUsed function is called again as
described above.

In step 1273, the slave device sets DATS and DAL and the
slave device calls the master device’s DataAvailable function.

After the slave device calls the master device’s DataAvail-
able function in step 1273, the master sets DUTS and DUL
and calls the slave device’s DataUsed function in step 1274
and control returns to step 1276 to check if there is additional
data to process as described above.

The following code example is an implementation of the
flowchart of FIG. 12 and shows a simple implementation of
AXI slave that can process read transactions.

/¥

*% This function is called by the SBPE when it has decoded a read transaction for

** the slave.
*/

void _ slavetimedreadaccess(void *VoidIP, tAmpiStdBusTransaction *pBusCommand)

{

tInstanceData *IP = (tInstanceData*)VoidIP;

/¥

** Only process one transaction at a time.

*/

if (IP->Processingtransaction)

US 9,311,437 B2
27 28

-continued
{
/*
** Queue this transaction.
*/
IP->QueuedReadTransaction = pBusCommand;
return;
)
IP->Processingtransaction = TRUE;
/*
** Update pSourceBuffer and SlaveData pointer
*/

pBusCommand—>pSourceBuffer = (tWord8*)&IP->ReturnBuffer[0];
pBusCommand—>pSlaveData = IP;
/*
** Set DataUsed callback.
*/
pBusCommand—>pBusTransDataUsed = AxiReadSlaveDataUsed;
/*
** call CommandUsed function.
*/
pBusCommand—>CommandUsed TickStamp = pBusCommand->CommandAvailableTickStamp +
CommandDelay;
pBusCommand—>pBusTransCommandUsed(pBusCommand);
/*
** Init DataUsedTickStamp, then process the first data beat.
*/
pBusCommand—>DataUsed TickStamp = pBusCommand—>CommandUsedTickStamp +
IP—>timing.read;
SlaveReadProcessBeat(IP, pBusCommand);
¥
/*
** This function processes 1 beat of read data.
*/
void SlaveReadProcessBeat(tInstanceData *IP, tAmpiStdBusTransaction *pBusCommand)
{
tWord32 BeatSize;
/*
** Determine beat size in bytes.
*/
BeatSize = 0x1 << ((pBusCommand—>SubCommand & AxiSubCommandSizeMask) >>
AxiSubCommandSizeOffset);
/*
** Read data.
*/
Copyreaddata(IP, pPBusCommand, BeatSize);
/*
** Update DataAvailable length and tick stamp, then call master’s
** DataAvailable callback.
*/
pBusCommand—>DataAvailableLength += BeatSize;
pBusCommand—>DataAvailableTickStamp = pBusCommand—>DataUsed TickStamp;
pBusCommand—>pBusTransDataAvailable(pBusCommand);
¥
/*
** This function is called by the master after a beat of data has been processed.
*/
void AxiReadSlaveDataUsed (tAmpiStdBusTransaction *pBusCommand)
{
tInstanceData *IP = (tInstanceData*)pBusCommand->pSlaveData;
/*
** Check if transaction has finished.
*/
if (pBusCommand—>DataUsedLength == pBusCommand->Length)

IP—>Processingtransaction = FALSE;
ProcessQueuedTransaction (IP);

}

else
{
/*
** next beat.
*/
SlaveReadProcessBeat(IP, pBusCommand);

/*

** This function is called by the slave after processing both read or write

** transactions. It handles processing the next transaction in the queue, where
** read transactions are given priority.

US 9,311,437 B2

29

-continued

30

*/
void ProcessQueued Transaction(tInstanceData *IP)

tAmpiStdBusTransaction *pBusCommand;
/*

** Process queued transaction.

*/

if (IP->QueuedRead Transaction)

pBusCommand = IP->QueuedRead Transaction;
IP->QueuedReadTransaction = NULL;
_ slavetimedreadaccess(IP, pBusCommand);

else if (IP->QueuedWriteTransaction)

pBusCommand = IP->QueuedWriteTransaction;
IP->QueuedWriteTransaction = NULL;
__slavetimedwriteaccess(IP, pBusCommand);
¥
¥

3.14 Slave Write Access

The following section describes how, in accordance with
an embodiment, an AXI slave processes a timed write trans-
action.

FIG. 13 shows the timing 1300 of each channel involved
during an AXI write transaction according to one embodi-
ment.

In the example transaction shown in FIG. 13, the master
elects to make the first data payload available at the time the
transaction was issued onto the bus. This is not compulsory,
and the master is free to delay the first data payload by setting
DataAvailableLength=0 before it issues the transaction.

As depicted in FIG. 13, the master issues a transaction; it is
decoded by the SBPE and routed to the slave’s write bus port
by calling the slave’s registered write access function. The
master has set the CommandAvailableTickStamp (CATS)
1369 to indicate the time at which the transaction was initi-
ated, orin AXI terms, the clock edge at which write command
valid is asserted. This marks the start of the address phase.

If the slave cannot process the transaction at this time, for
example, if it is busy with another write transaction, then the
transaction is queued. The queuing mechanism is the slave’s
responsibility. The slave will not receive another transaction
through its write slave port until it calls pBusTransCom-
mandUsed for this transaction.

Next, when the slave is ready to process the transaction, it
sets CommandUsedTickStamp (CUTS) 1371 to indicate the
time at which the transaction was accepted, and, in case
additional data payloads are required, sets pBusTrans-
DataAvailable to point to the slave’s DataAvailable callback
function. This marks the end of the address phase.

The slave then calls pBusTransCommandUsed (Com-
mandUsed). As for reads, this, together with CUTS 1371,
represents the sampling of the READY signal 1373 on the
AXI write address channel, and indicates to the master that
the channel is free, and the slave’s write port is ready to accept
another transaction. Slave devices must not call Com-
mandUsed until they can process another transaction on the
slave’s write port. Within the CommandUsed callback, the
master may issue another transaction, which would be routed
to the slave before the original CommandUsed function
returned.

Next, the slave checks DataAvailableLength. The master
may or may not have made the first payload of data available
(by setting DataAvailableLength to a non-zero value). If
DataAvailableLength is non-zero, the slave can process some

20

25

30

35

40

45

50

55

60

65

or all of the data immediately, otherwise, the slave must wait
for the master to call the slave’s DataAvailable function.

Then master increments DataAvailablel.ength and calls
the slave’s DataAvailable function. The number of bytes to
process is given by DataAvailableLength—DataUsedLength.

Each time the master calls DataAvailable, the slave per-
forms the data store, sets DataUsedLength=DataAvailable-
Length, updates DataUsedTickStamp (DUTS) 1374 and calls
pBusTransDataUsed.

After all data has been processed, the slave sets Status in
the transaction data structure, sets ResponseAvailableTickS-
tamp, (RATS) 1382, pBusTransResponseUsed, and calls
pBusTransResponseAvailable.

The master then reads the slave response (Status), sets
ResponseUsedTickStamp (RUTS) 1384 and calls pBusTran-
sResponseUsed. The transaction is now complete.

According to an embodiment, the slave is responsible for
processing data as it is made available by the master. Accord-
ing to an embodiment, each time the slave calls pBusTrans-
DataUsed, it sets the DataUsedTickStamp and also sets
DataUsedLength=DataAvailableLength.

In one embodiment, for AXI write transactions, only a
single response (which applies to the entire burst) is returned
by the slave. If any beat in the burst caused an error, the slave
must continue with the burst until all data has been processed
(the data need not be stored), at which time it can return the
error response to the master.

FIG. 14 shows a flowchart 1400 of one example of a simple
implementation of a process whereby an AXI slave can pro-
cess write transactions. Flowchart 1400 includes a transaction
queue of size=1.

The process starts at step 1452 where the Standard Bus
Protocol Engine (SBPE) calls the slave device’s decode func-
tion.

Instep 1453, it is determined if the slave device is busy with
awrite. According to an embodiment, if the slave device is not
busy, CUTS will be set and the slave device will call the
master device’s CommandUsed function in step 1471 as
described below, but ifthe slave device is busy, the transaction
is queued in step 1455.

The process continues in step 1471, the slave device calls
the master device’s CommandUsed function.

In step 1476, it is determined if the slave device has data to
process. According to an embodiment, if the slave device has
data to process, DUTS and DUL will be set and the slave

US 9,311,437 B2

31

device will call the master device’s DataUsed function in step
1473 as described below, but if the slave device does not have
data to process, the master device sets DATS and DAL and
calls the slave device’s DataAvailable function in step 1482 as
described below.

In step 1473, the slave device sets DUTS and DUL and the
slave device calls the master device’s DataUsed function.

In step 1481, it is determined if the data is finished. Accord-
ing to an embodiment, if the data is finished, RATS will be set
and the slave device will call the master device’s Respon-
seAvailable function in step 1484 as described below, but if
the data is not finished, the master device sets DATS and DAL
and calls the slave device’s DataAvailable function in step
1482 as described below.

In step 1482 the master device sets DATS and DAL and
calls the slave device’s DataAvailable function and control
returns to step 1473, where the slave device sets DUTS and
DUL and calls the master device’s DataUsed function as
described above.

32

In step 1484, RATS is set and the slave device calls the
master device’s ResponseAvailable function.

After completing step 1484, the method continues to step
1486 where the master device sets RUTS and calls the slave
device’s ResponseUsed function. When step 1484 has been
completed, the method continues with step 1488 where the
queue is checked as described below.

In step 1488, it is determined if the slave device’s queue is
empty. According to an embodiment, if the queue is empty,
the process ends in step 1480, but if the queue is not empty,
control returns to step 1486 where the master device sets
RUTS and the master device calls the slave device’s Respon-
seUsed function in step 1486.

The following code example shows a simple implementa-

tion of an AXI slave that can process write transactions as
shown in the flowchart of FIG. 14.

/¥

** This function is called by the SBPE when it has decoded a write transaction for

** the slave.
*/

void _ slavetimedwriteaccess(void *VoidIP, tAmpiStdBusTransaction *pBusCommand)

{

tInstanceData *IP = (tInstanceData*)VoidIP;

/¥

** Only process one transaction at a time.

*/

if (IP->Processingtransaction)

{
/¥

** Queue this transaction.

*/

IP—>QueuedWriteTransaction = pBusCommand;

return;

IP—>Processingtransaction = TRUE;

/¥

** Update SlaveData pointer

*/

pBusCommand—>pSlaveData = IP;

/¥

** Set DataAvailable and ResponseUsed callbacks.

*/

pBusCommand—>pBusTransDataAvailable = AxiWriteSlaveDataAvailable;
pBusCommand—>pBusTransResponseUsed = AxiWriteSlaveResponseUsed;

/¥

** call CommandUsed function.

*/

pBusCommand—>CommandUsedTickStamp = pBusCommand—->CommandAvailableTickStamp +
CommandDelay;
pBusCommand—>pBusTransCommandUsed(pBusCommand);

/¥

** Process any data available.

*/

pBusCommand—>DataUsedLength = 0;
if (pBusCommand—>DataAvailableLength > 0)
AxiWriteSlaveDataAvailable(pBusCommand);

¥
/¥

** This function is called by the master when new write data is available.

*/

void AxiWriteSlaveDataAvailable(tAmpiStdBusTransaction *pBusCommand)

{

tInstanceData *IP = (tInstanceData*)pBusCommand—>pSlaveData;

tWord32 Index;

tWord32 NumBeats;

/*
** Store data.
*/

NumBeats = Copywritedata(IP, pBusCommand);

/¥

*% Update DataUsed length and tick stamp, then call master’s DataUsed callback.

*/

pBusCommand—>DataUsedLength = pBusCommand->DataAvailableLength;

US 9,311,437 B2

33

-continued

34

pBusCommand—>DataUsed TickStamp = pBusCommand—>DataAvailableTickStamp +

IP—>timing.write * NumBeats;
pBusCommand—>pBusTransDataUsed (pBusCommand);
/*
** Check if transaction has finished.
*/
if (pBusCommand—>DataUsedLength == pBusCommand->Length)

/*

** Tssue response to master.

*/

pBusCommand—>Status = StdBus2StatusOkay;

pBusCommand—>ResponseAvailableTickStamp = pBusCommand->DataUsedTickStamp;

pBusCommand—>pBusTransResponseAvailable(pBusCommand);

¥
/¥

** This function is called by the master after it has read the slave write response.

*/

void AxiWriteSlaveResponseUsed (tAmpiStdBusTransaction *pBusCommand)

{
tInstanceData *IP = (tInstanceData*)pBusCommand—>pSlaveData;
/*
** transaction has finished.
*/
IP—>Processingtransaction = FALSE;
ProcessQueued Transaction(IP);
¥

3.15 Byte Enables

According to an embodiment, the StdBus AXI protocol is
settable to optionally support byte enables on write transac-
tions. In accordance with an embodiment of the invention, the
Byte Enable array is set up by masters and used by slaves to
indicate which bytes of a write transfer are to take place. A
value of NULL indicates that the entire write transfer is to
take place. When not NULL, in an embodiment, pTransBy-
teEnables must point to an array of bytes of length Length. A
value of OXFF in a byte of the array is used to indicate that the
respective byte is to be accessed. A value of 0x00 indicates
that it is not accessed.

According to an embodiment of the present invention, the
Byte Enable array must be the length of the entire transaction
data, such that the DAL and DUL act as offsets (relative to
CwiOffset) into both the Byte Enable array (if the pointer is
not NULL) and the pSourceBuffer data array.

According to an embodiment, the array is intended to be
used as a data mask when writing data as shown below:

tWord8 Mask = pBusCommand->pTransByteEnable[Index];
IP->MyData[Index] &= (~Mask);
IP->MyData[Index] |= (pBusCommand->pSourceBuffer[Index] & Mask);

3.16 Critical Word First Offset

According to an embodiment of the invention, the Cw{Qff-
set field in the transaction data structure indicates the index of
the first beat to be processed in the transaction. Normally, for
slave device accesses, caching is not enabled, so the Cw{Off-
set field in the transaction is set to 0. For cached accesses, a
VPM may set this field to a non-zero value to indicate that the
first beat of a transaction is not the address of the actual
transaction, but offset from the start of the transaction by
CwiOffset beats. This is how a wrapping burst transaction is
differentiated from an incrementing burst transaction. In this
case, the first byte to be transferred is determined by
CwiOftset*BeatSize. This field is only non-zero for wrap-
ping AXI bursts, and is significant for slave devices when
using DataAvailableLength and DataUsedLength as offsets
into pSourceBuffer.

40

45

50

At any time, according to an embodiment, DataAvailable-
Length indicates the total number of bytes available in pSour-
ceBufter starting at CwtOffset. For example, if Cw{Offset=1,
BeatSize=2 and DataAvailablel.ength=6, the byte offsets 2,
3,4,5, 6 and 7 are available in pSourceBuffer, and other byte
offsets are not available in this data payload.

In one embodiment, the Length field defines the total num-
ber of bytes to be transferred in this transaction, and hence the
size of the data buffer pointed to by pSourceBuffer. It is
important therefore to wrap offsets into pSourceBuffer to
avoid accessing beyond the end of the buffer. For example, if
CwiOffset=7, BeatSize=1, Length=16 and DataAvailable-
Length=12, the byte offsets 7, 8,9, 10, 11,12, 13,14, 15,0, 1
and 2 are available in the buffer.

DataUsedlength indicates the number of bytes already
processed, and is also indexed relative to CwfOffset.

FIG. 15 shows, in accordance with an embodiment, each of
the transaction data structure fields with respect to the pSour-
ceBuffer data buffer 1500. Data already processed 1592 and
data ready for processing 1594 are part of data buffer 1500.

The following is an example of code that, in the example
infrastructure described herein, is arranged for copying data
from pSourceBuffer that makes use of CwiOffset 1590
depicted in FIG. 15.

tWord32 Offset;

tWord32 Count = pBusTransaction—>DataAvailableLength —
pBusTransaction—>DataUsedLength;

tWord32 Start = (pBusTransaction—>Cw{Offset*BeatSize) +
pBusTransaction—>DataUsedLength;

for (Offset = 0; Offset < Count; Offset++)

{
/*
** Determine wrapped byte index, then copy data.
*/
tWord32 Index = (Start + Offset) % pBusTransaction—>Length;
DestBuffer[Index] = pBusTransaction—>pSourceBuffer[Index];
¥

As wrapping burst accesses are typically only generated by
VPMs performing cached read or fetch accesses, the StdBus

US 9,311,437 B2

35

AXI protocol does not support unaligned wrapping burst
accesses. If the CwfOffset field 1590 depicted in FIG. 15 is
non-zero, then the transaction address must be aligned to the
beat size.
3.18 Exclusive Accesses

In accordance with an embodiment of the present inven-
tion, the StdBus AXI protocol supports exclusive read and
write operations through use of the BusCycleAttributes field
in the transaction data structure. According to an embodiment
of the invention, slaves can check for an exclusive access
using the following example code:

if (pBusTransaction—>BusCycleAttributes &
CycleExclusiveAttributeMask)

/* Exclusive access */

else

/* Normal access */

In an embodiment, if the exclusive read or write is success-
ful, the slave sets Status in the transaction data structure to
StdBus2StatusExOkay. If the exclusive Transfer fails, the
slave returns a Status of StdBus2StatusOkay.

If the slave device does not support exclusive accesses,
exclusive write transactions always update the device loca-
tion, however, both exclusive reads and writes will return with
Status StdBus2StatusOkay. This indicates to the master that
the exclusive transfer failed.

3.19 Locked Accesses

In accordance with an embodiment of the invention appli-
cable to the AXI protocol, locked transfers require that no
other master is allowed to access the locked slave region until
an unlocked transfer from the same master completes.

According to an embodiment, device models with a single
slave port (one read, one write) do not require any additional
processing for locked transfers (other than to pass on the
locked attribute if acting as a bridge)—it is up to the con-
nected master device to ensure that the locked slave region is
respected.

In accordance with an embodiment, for device models with
multiple slave bus ports (e.g., multi-port bridge or intercon-
nect devices), the device itself must ensure that the locked
slave region or downstream master read/write bus ports are
not allocated to any other slave until the locked access has
completed. This is achieved in one embodiment by buffering
other transactions inside the device until the locked access has
completed (by delaying the call to pTransCommandUsed).

Some VPM embodiments may issue locked reads and
locked writes on the same bus port (e.g., the read port) when
connected to a StdBus protocol net for a traditional (non-
AXI) bus.

Unaligned Transfers

In accordance with an embodiment of the invention, the
StdBus AXI protocol requires that each data payload is
aligned to the start or end bytes of the transaction, or a beat
boundary in-between. For example, if an AX1 slave receives a
transaction on an 8-byte bus, a burst write of 9 beats, where
the size is 4 bytes, the start address is an odd (8n+1) Address,
and the Length is 32, then, DataAvailableLength, and
DataUsedlength can only take the values 0£0,3,7, 11,15, 19,
23,27,31 or 32.

In such an embodiment, the transaction can still be mod-
eled as a single data payload, or, broken into sets of individual
beats, so long as the DAL and DUL use the above values, that
is, they are beat-aligned.

10

15

20

25

30

35

40

45

55

60

65

36

AXI Transaction Timing

In accordance with an embodiment of the present inven-
tion, the basis of timing within a transaction is fully described
in terms of what is referred to herein as TickStamps. These
TickStamps are contained within the transaction data struc-
ture passed to the slave device in the pre-registered bus access
function. TickStamps may be of type tInt32, NOT tWord64 or
tWord32, and their value is always relative to the clock that is
driving the StdBus connection. On their own, TickStamps are
meaningless, however, in accordance with an embodiment,
when the “now” TickStamp of the StdBus connection is sub-
tracted from a TickStamp, the resultant tInt32 value repre-
sents the number of clock cycles by which the respective
event is ahead or behind the current clock edge. According to
an embodiment of the present invention, all TickStamps
therefore must be changed and/or measured, relative to the
TickStamps within the transaction.

In accordance with an embodiment, the first TickStamp
visible to the slave device is the CommandAvailableTickS-
tamp, which is set by the master prior to issuing the transac-
tion. This indicates the start of the address/control phase of
the transfer. It is up to the slave to determine when it can
process the transaction, and set CommandUsedTickStamp
accordingly.

According to an embodiment of the present invention, for
read transactions, the slave determines the time required to
deliver the read data based on the burst length, beat size, bus
width etc. This value is set in DataAvailableTickStamp, and
passed to the master via the pBusTransDataAvailable call-
back function. It is up to the slave how much data to pass each
time pBusTransDataAvailable is invoked. However, the mas-
ter’s timing in invoking pBusTransData Used must allow for
at least the number of beats in the data payload. For example,
a master receiving a data payload cannot process more than a
single bus width of data in one clock cycle.

In accordance with an embodiment of the present inven-
tion, for write transactions, the start of each data phase is
determined by the master, who is responsible for setting
DataAvailableTickStamp. The slave then determines the time
required to process DataAvailablelength bytes (using the
beat size, bus width etc) and sets DataUsedTickStamp as
required. The slave’s timing in invoking pBusTransDataUsed
must allow for at least the number of beats in the data payload.
For example, a slave receiving a data payload cannot process
more than a single bus width of data in one clock cycle. When
all data has been transferred, the slave sets ResponseAvail-
ableTickStamp to indicate to the master the clock edge at
which the slave response is asserted.

By interrogating the TickStamp values, in an embodiment,
the slave device can establish when in time it is being called
and knows when data is available in the case of a write. By
manipulating the TickStamp values, it is able to report when
data has been made available in the case of a read operation.

In one embodiment, TickStamp values should never be
compared to other TickStamp values. Instead, they should be
subtracted from each other and compared to 0. They have
been specifically typed as tInt32 to permit the difference to
produce a positive or negative result relative to the current 64
bit clock count, whilst only using 32 bit arithmetic.
Synchronization

When using one embodiment for modeling a slave device,
there may be times that the read or write operation will have
to be synchronized with an event which has to occur before
valid data can be written or read. The following example is a
situation which may occur in a modeling scenario using an
embodiment of the present invention:

US 9,311,437 B2

37

A master device decides to read data from a slave device
register. The slave device can only provide this data if another
hardware function within the device has completed. For
example, in order to read an I/O pin the data has to be returned
to the master with the current value which is valid at the end
of'the transaction time. As the slave device is ahead of time in
terms of the transaction, it must schedule a callback to itselfto
bring the simulation time to a valid point where the /O pin
can be sampled. If this is the case, the slave device has the
responsibility to update the NowTickStamp field within the
transaction structure when the callback to itself returns,
remembering that whenever control is passed from one sub-
system to another, the NowTickStamp must be updated to
reflect the current time in bus ticks. Time has then effectively
moved on to a point where the 1/O pin can be read.

In an embodiment, synchronization can only be performed
to a point in time ahead of the NowTickStamp within the
transaction structure, since time cannot go backwards. Under
all circumstances, when a transaction is first passed to a slave
device, the CommandAvailableTickStamp (CATS), which
marks the beginning of the command/address phase, will be
at or ahead of the NowTickStamp (NTS) time. If these tick
stamps are not equal, that is, the transaction is ahead of
current time, then, the difference (CATS-NTS) is greater than
zero and indicates the number of clock ticks ahead of current
time. The slave device model may want to schedule a callback
to the beginning or end of the command, or, the first data
phase of the transaction. This ensures that the data read or
written by the slave is done at the appropriate time within the
data phase of the transaction.

Data Handling

In another embodiment, data which is passed to a slave
device (write) and data which is presented to a master device
(read) can be handled via buffers.

For a write transaction, in an embodiment, the master
merely provides a pointer (pSourceBuffer) to the data to be
transferred. This may be a pointer to 8-bit data, and is stored
in the bus transaction data structure. It points to the first (or
only, in the case of a single byte transfer) byte in the transac-
tion. It is the Length variable in the bus transaction data
structure which informs the slave device of the (total) size of
the data buffer required for the transfer. The DataUsedLength
field gives the current offset into pSourceBuffer, and the
number of bytes available is given by DataAvailableL.ength—
DataUsedlength. For a write transaction, the slave device can
extract the data from the buffer pointed to by pSourceBuffer
and store the variable if required or take action on that data as
appropriate. The data must be used prior to invoking pBus-
TransDataUsed.

According to an embodiment of the invention, for a read
transaction a data buffer is usually either declared in the
instance structure of the slave, or, allocated on the stack of the
slave callback function which is to perform the read access
and invoke the master’s pBusTransDataAvailable callback.
Unless all of the data is made available to the master in a
single call to pBusTransDataAvailable, it is recommended
that the slave declare the data buffer in its instance structure.
As it is a read transaction, according to an embodiment, it is
the responsibility of the slave device to provide the pointer to
the data it is about to return, therefore the pSourceBuffer
variable must be updated to reflect this. The alignment of the
buffer in physical memory must match the 32-bit alignment
of'the accessed transaction data. For example, if the access is
of Length 32 bytes and aligned to a 32 bit address, then it
would be incorrect to provide a buffer pointer with an address
which is not 32-bit aligned (see Buffered data Handling
Alignment below).

10

15

20

25

30

35

40

45

50

55

60

65

38

When the slave device has processed a block of data,
according to an embodiment, it must indicate to the master
how much data has been processed. This is reflected in the
DataAvailablelL.ength ~ variable for reads, or the
DataUsedLength for writes, of the bus transaction data struc-
ture.

// read
// write

pBusCommand—>DataAvailableLength += BytesProcessed;
pBusCommand—>DataUsedLength =
pBusCommand—>DataAvailableLength;

Buffered Data Handling Alignment

In most cases, when designing a slave interface using an
embodiment of the present invention, it is necessary to buffer
data in the interface itself. Since, in an embodiment, for
performance reasons, the data itself is not passed back and
forth in a bus transaction it is only a pointer to the data which
is passed. Because of this, a static read buffer can be setup for
the slave interface which can then be used to pass the pointer
back along the transaction structure. Since in one embodi-
ment this buffer is a tWord8 pointer the storage element
should type-cast to this variable type. Even though this is a
tWords8 pointer, care should be taken to ensure that this buffer
is aligned on an n-byte boundary (where n is the data size of
the storage element). If the data buffer is an array of bytes, the
following code describes one example approach that can be
taken. Of course, this may not be necessary in a different
implementation.

struct sInstanceData

tWord32 BufferToBeusedForBustransactions|[8];

1

When the assignment is made for a read, the pSourceBuffer
is type cast to the array as such.

pBusTransaction—pSourceBuffer=(tWord8*)&IP—
BufferToBeusedForBustransactions[0];

This means that the pSourceBuffer will inherit the align-
ment of 4 bytes as set by the tWord32 declaration.
Partial/Complete Callbacks

Unlike for simulating transaction for other bus protocols
(e.g., non-AXI protocols such as traditional AMBA bus,
AHB, AHB_Lite, etc), according to an embodiment, StdBus
AXI slave devices do not call the master’s partial or complete
callback functions.

Slave Device Aborts

In an embodiment, the StdBus AX1 protocol does not allow
either the master or the slave to abort a transaction. All beats
in the transfer must occur, even if the data is ignored (for
example, if there is an error in the slave).

3.17 Untimed Transactions

In one embodiment, to support access to a debugger of a
target processor being simulated, slave devices register call-
back functions for untimed read and write transactions. In the
implementation described herein, untimed transactions are
protocol independent—they do not use the AXI available/
ready handshaking mechanism, nor do they use the partial/
complete callbacks like for simulating other, e.g., conven-
tional non-AXI bus protocols.

The following code example implements a slave that can
process untimed read and write transactions using the infra-
structure described herein and according to one embodiment.
In the example, this slave contains a number of 4-byte regis-
ters, so untimed transactions that are not aligned to a 4-byte
boundary, or that exceed 4 bytes, are broken up into multiple
register accesses as required.

US 9,311,437 B2
39 40

void _slaveuntimedreadaccess(void *VoidIP, tAmpiStdBusTransaction *pBusCommand)

tInstanceData *IP = (tInstanceData *)VoidIP;

tWord64 Address;
tWord8 *pData;
tWord32 Length;
tWord32 Offset;
tWord32 ByteNum;
tWord32 Index;
tWord32 RegData;
/ *

** Initialize the done length.

*/

pBusCommand—>DoneLength = 0;

/ *

** Set up the bus source data buffer, using a buffer set up in the
** instance data structure. This assumes a maximum of 4 byte reads.

*/

pBusCommand—>pSourceBuffer = (tWord8 *)&IP->ReturnData;

/*

** Check the read length. Currently, only support up to 4-byte reads.
*/

if (pBusCommand—>Length > 4)

AmpiStreamPrintf(ERROR_ MSG, “Untimed read access greater than 4 bytes\n™);
IP->ReturnData = 0;

return;
}
/*
** Sets up the local variables.
*/

Address = pBusCommand->Address;

Length = pBusCommand->Length;

pData = pBusCommand->pSourceBuffer;

/*

** Calculate the 4-byte aligned offset address of the register.

*/

Offset = ((tWord32) (Address — IP->StartAddress)) & ~(sizeof(tWord32) — 1);
/*

** Calculate the byte number required.

*/

ByteNum = ((tWord32) (Address — IP->StartAddress)) — Offset;
/*

** Check if there are any leading bytes that are not aligned to a 4-byte
** poundary to read. This will fall into part of a register.

*/

if (ByteNum)

{

RegData = _ readregister32(IP, Address);
for (Index = ByteNum; Index < sizeof(tWord32) && Length > 0; Index++)

*pData++ = ((tWord8 *)&RegData)[Index];
—-Length;
++Address;

¥

/*

** Address is now aligned to a 4-byte boundary.
** read the remaining bytes.

*/

if (Length > 0)

RegData = _ readregister32(IP, Address);
for (Index = 0; Index < Length; Index++)

*pData++ = ((tWord8 *)&RegData)[Index];

pBusCommand—>DoneLength = pBusCommand->Length;

void _ slaveuntimedwriteaccess(void *VoidIP, tAmpiStdBusTransaction *pBusCommand)

{

tInstanceData *IP = (tInstanceData *)VoidIP;

tWord32 CurrentData;
tWord32 Offset;
tWord32 ByteNum;
tWord32 Index;

tWord64 CurrentAddress;
tWord64 Address;
tWord32 Length;

tWord8 *pData;

US 9,311,437 B2

42

-continued
/*
** Prepare details for the write to the register.
*/

Address = pBusCommand->Address;

Length = pBusCommand->Length;

pData = pBusCommand->pSourceBuffer;

/*

** Calculate the 4-byte aligned offset address of the register.
*/

Offset = ((tWord32) (Address — IP->StartAddress)) & ~(sizeof(tWord32) — 1);

/*

** Calculate the byte number required.

*/

ByteNum = ((tWord32) (Address — IP->StartAddress)) — Offset;
/*

** Check if there are any leading bytes that are not aligned to a 4-byte
** poundary to write. This will fall into part of a register.

*/

if (ByteNum)

CurrentAddress = Address;
CurrentData = __readregister32(IP, CurrentAddress);

for (Index = ByteNum; Index < sizeof(tWord32) && Length > 0; Index ++)

((tWord8 *)&CurrentData)[Index] = *pData++;

—-Length;
++Address;
¥
__writeregister32(IP, CurrentAddress, CurrentData);
¥
/*

** Address is now aligned to a 4-byte boundary.

** Now write all the 4-byte aligned values in 4-byte chunks.
*/

while (Length >= sizeof(tWord32))

__writeregister32(IP, Address, *((tWord32 *) pData)++);
Address += sizeof(tWord32);
Length —= sizeof(tWord32);
}
/*
** Deal with any trailing bytes that are less than 4 bytes long.
** This will fall into part of a register.

*/
if (Length)
CurrentAddress = Address;
CurrentData = __readregister32(IP, CurrentAddress);
for (Index = 0; Index < sizeof(tWord32) && Length > 0; Index ++)
((tWord8 *)&CurrentData)[Index] = *pData++;
—-Length;
¥
__writeregister32(IP, CurrentAddress, CurrentData);
}
/*
** Set the done length to the specified length.
*/

pBusCommand—>DoneLength = pBusCommand->Length;

Responsibilities of the Slave Device

In one embodiment, any slave device model connected to
the StdBus the model has certain mandatory responsibilities
in connecting to, and carrying out the bus transactions. Of
course these are implementation dependent, and these man-
datory responsibilities apply to the embodiments described
herein. The following is a list of the exemplary slave respon-
sibilities discussed in this section.

Initialization:

Declare handles to the bus connection ports

Provide timing parameters for transactions

Store the handles to the bus connection ports

Register the connection type to the SBPE

Register callbacks for each type of transaction (read, write,
fetch etc), both timed and untimed, to be handled by the slave.

60

65

Register the decoder Range of the device.

Timed Transaction Processing

Update CommandUsedTickStamp and call the master’s
pBusTransCommandUsed function only once the slave is
capable of receiving another transaction.

Update the pBusTransDataAvailable, pBusTransDa-
taUsed, and pBusTransResponseUsed function callback
pointers as required by the transaction direction (read/fetch or
write).

For reads, update DataAvailablel.ength, DataAvailableT-
ickStamp and call the master’s pBusTransDataAvailable
function to pass data back to the master.

For writes, update DataUsedlength, DataUsedTickStamp
and call the master’s pBusTransDataUsed function.

US 9,311,437 B2

43

Update NowTickStamp prior to each time control is passed
back to the master.

For writes, update ResponseAvailableTickStamp and call
the master’s pBusTransResponseAvailable function when the
transaction is complete.

Untimed Transaction Processing (for Debugger Support)

Provide access for all Lengths of transactions available
from the target Code debugger.

Update Donelength to reflect how much data was pro-
cessed.

4.0 StdBus AXI Master Device Modeling

This section describes how, with one embodiment of the
invention, one can create a bus interface on a master device

10

15

44

MasterReadBusclock 1731: Declaration of the slave view
on the read bus clock net input port.

MasterReadBus 1739: Declaration of the master view on
the read bus StdBus net port.

MasterWriteBusClock 1737: Declaration of the slave view
on the write bus clock net input port.

MasterWriteBus 1741: Declaration of the master view on
the write bus StdBus net port.
4.2 Master Device Instance Structure

As part of the module modeling methodology used in the
example embodiments described herein, a model has an
instance structure associated with it. This instance structure
represents a view of the device and data storage elements. In
one embodiment, it is in this instance structure, that handles
are created and stored for each of the architecture modeling
API ports on the module interface. An example of this is
shown below.

/¥

** instance data structure

*/

struct sInstanceData

{
tWord32 MasterReadBusDataWidth;
tWord32 MasterWriteBusDataWidth;
tWord32 MasterReadBusAddressBits;
tWord32 MasterWriteBusAddressBits;
const tAmpiClockHandleSlave *pMasterReadBusclock;
const tAmpiStdBusHandleMaster *pMasterReadBus;
const tAmpiClockHandleSlave *pMasterWriteBusClock;
const tAmpiStdBusHandleMaster *pMasterWriteBus;
tAmpiStdBusTransaction ReadTransaction;
tAmpiStdBusTransaction WriteTransaction;
tWord8 DataBufferfMAX_BURST_LENGTH];
tVastSampleAxiMasterDeviceParameters ~ Config;

i

model. Described herein are the steps from initialization
through to the API function registration and the callback
mechanisms involved.

FIG. 16 shows a typical master device representation 1600
showing the architecture modeling API port connections
1638 and 1640 used to achieve communications with the
StdBus AXI protocol engine embodiment described herein.
4.1 Master Device Bus Interface

FIG. 17 shows a master device bus interface in the form of
a high level view 1700 of the connections available to other
modules as seen in the COMET System Engineering Envi-
ronment (SEE) framework used in the examples herein. FIG.
17 shows connections and properties of an example master
device 1730. This is for demonstration purposes only.

The following list describes elements included in master
device 1730 and depicted in FIG. 17. The list below and
elements depicted in FIG. 17 are not comprehensive. Further-
more, not all master devices such as master device 1730 need
to have all elements depicted in FIG. 17 and listed below.

Ports:

MasterReadBusclock 1734: user-defined name of the input
used for the master read bus clock signal.

MasterReadBus 1738: user-defined name of the master
read bus connection to the StdBus net type signal.

MasterWriteBusClock 1735: user-defined name of the
input used for the master write bus clock signal.

MasterWriteBus 1740: user-defined name of the master
write bus connection to the StdBus net type signal.

Tasks:

40

45

60

In an embodiment, the handles created and stored in the
instance structure are then used in the model as references to
the bus connections.

In one embodiment, this instance structure also provides
access to or contains at least two copies of the bus transaction
data structure. These are owned by the master device instance
and are used to initiate transactions through their issue to the
StdBus protocol engine. In the above coded example, two
transaction structures are defined—one is used for read trans-
actions and the other is used for write transactions.

4.3 Initialization

As has been stated in the previous section, in an embodi-
ment, initialization of the model is in essence where the
connection is made between the user-defined software handle
and the user-defined architecture modeling API port names
that represent the hardware connections. According to an
embodiment of the invention, the initialization of the module
task is defined in the model function:
<modelname>InitTaskInstance. The following example
shows how the handles can connect to the hardware variable
name.

IP—>pMasterReadBusclock =
AmpiClockInitSlavePortView(“MasterReadBusclock”, “All”);
IP—>pMasterWriteBusClock =
AmpiClockInitSlavePortView(“MasterWriteBusClock™, “All”);
IP—>pMasterReadBus =
AmpiStdBusInitMasterPortView(“MasterReadBus”, “All”);

US 9,311,437 B2

45

-continued

IP—>pMasterWriteBus =
AmpiStdBusInitMasterPortView(“MasterWriteBus”, “All”);

The first two lines use the architecture modeling API func-
tion, AmpiClocklnitSlavePortView, to define the clock as an
input to the master device for the read and write buses. The
actual name of the hardware architecture modeling API port
defined in the model structure is used to reference the handle
in the instance structure. The third and fourth lines use the
architecture modeling API function, AmpiStdBusInitMaster-
PortView, to define the read and write buses as master con-
nections to the master device and the actual name of the
hardware architecture modeling API port defined in the
model structure is used to reference the handle which is then
stored in the instance structure. Only some architecture mod-
eling API functions are described herein.

4.4 Registration of StdBus Master Connection

In one embodiment, in order to connect to a StdBus, infor-
mation is gathered about the bus connections available. When
connected in a platform, it is possible, for example, to estab-
lish the address and data widths of the master port StdBus
connections using the following example architecture mod-
eling API function calls.

IP—>MasterReadBusDataWidth =
AmpiStdBusMasterGetDataWidth(IP—>pMasterReadBus) / 8;
IP—>MasterWriteBusDataWidth =
AmpiStdBusMasterGetDataWidth(IP—>pMasterWriteBus) / 8;
IP—>MasterReadBusAddressBits =

AmpiStdBusMasterGet AddressWidth(IP->pMasterReadBus);
IP—>MasterWriteBusAddressBits =

AmpiStdBusMasterGet AddressWidth(IP->pMasterWriteBus);

In another embodiment, this can be used by the model to
establish valid connection parameters or to calculate timing
for multiple data phase transactions. In the case of the
example above, the function will return the bit width of the
data portion of the buses and the user parameters Master-
ReadBusDataWidth and MasterWriteBusDataWidth will
store the data width of the buses in bytes, and MasterRead-
BusAddressBits and MasterWriteBus AddressBits will store
the address width of the buses in bits.

According to an embodiment, the AXI master connects to
the bus using the correct type (read or write) and data width.
The following code demonstrates the use of the AmpiStdBus-
MasterSetConnectType architecture modeling API function
call to connect the read and write buses.

AmpiStdBusMasterSetConnectType(pMasterReadBus,
AxireadD32V1connecttype);
AmpiStdBusMasterSetConnectType(pMasterWriteBus,
AxiwriteD32V1connecttype);

This example assumes that the bus data width is set to 4
bytes. For master devices that can connect to a number of
different bus widths and protocols, code similar to that used in
the slave as described in Section 3 can be used. Of course,
other code also could be used, as would be clear to those in the
art.

4.5 Timed Master Transaction Handling

Asdescribed above, in an embodiment, the transaction data
structure used to represent a StdBus AXI read or write opera-
tion is “owned” by the master device. The master is respon-

20

25

30

35

40

45

50

55

46

sible for initializing the transaction data structure prior to
issuing it on the appropriate bus port.

According to an embodiment of the invention, some ele-
ments of the transaction data structure are not normally
changed throughout the life of a master device, and may be
initialized once the StdBus connection has been made. The
following example demonstrates one version of initialization
of the master owned read and write transaction structures. All
other fields are initialized to 0, or NULL, by the use of the
calloc function to create the transaction record as a part of the
instance data. Additional fields are set prior to issuing the
transaction on the bus. For details on each of the fields being
set below, see section 6 below, titled “DETAILS OF ELE-
MENTS OF THE STDBUS TRANSACTION DATA
STRUCTURE

/*

** Initialize read transaction structure.

*/

IP—>Read Transaction.pMasterData = (void *)IP;

IP->Read Transaction. TransProtocol = AxiProtocol;

IP->Read Transaction.pNetMasterHandle = IP->pMasterReadBus;
IP—>Read Transaction.pBusClock = IP->pMasterReadBusclock;
IP->Read Transaction.InterfaceVersion = StdBusInterfaceV2v0;
IP—>Read Transaction. StructureVersion =
CompiledWithStdBusInterfaceVersion;

IP->Read Transaction.MasterEndianness = MasterEndianDefault;
IP->Read Transaction.Command = readOp;

IP->Read Transaction.Decoder = readdecode;

/*

** Initialize write transaction structure.

*/

IP—>WriteTransaction.pMasterData = (void *)IP;
IP->WriteTransaction. TransProtocol = AxiProtocol;
IP—>WriteTransaction.pNetMasterHandle = IP->pMasterWriteBus;
IP—>WriteTransaction.pBusClock = IP->pMasterWriteBusClock;
IP->WriteTransaction.InterfaceVersion = StdBusInterfaceV2v0;
IP—>WriteTransaction. Structure Version=
CompiledWithStdBusInterfaceVersion;
IP->WriteTransaction.MasterEndianness = MasterEndianDefault;
IP—>WriteTransaction.Command = writeOp;
IP->WriteTransaction.Decoder = writedecode;

The above example assumes that the master device is con-
nected to an instance of StdBus set to AXI protocol
(TransProtocol=AxiProtocol;). Master devices that can con-
nect to different protocol StdBus nets are responsible for
setting the appropriate value of TransProtocol.

The following sections describe how in some embodiments
of'the invention, an AXI master device issues and processes a
timed AXI read or write transaction.

Master Read Access

The following section describes the steps involved for an
AXImaster to issue and process a timed AX1 read transaction,
according to one embodiment of the invention.

First, the master initializes the transaction data structure, in
particular, setting the Address, Length, DataUsedLength and
Command32 fields as well as the pBusTransCommandUsed
and pBusTransDataAvailable callbacks.

Next, the master sets CommandAvailableTickStamp,
CommandUsedTickStamp, and NowTickStamp, and then
issues the transaction on the appropriate master bus port.

Then, the SBPE routes the transaction to the appropriate
slave port, and calls the slave’s registered decode function.

The slave then updates CommandUsedTickStamp and
calls the master’s pBusTransCommandUsed function. The
master is now free to issue another transaction of this type on
the bus.

The slave then sets its pBusTransDataUsed callback func-
tion and determines how many bytes to provide in each data

US 9,311,437 B2

47

payload and for each, sets DataAvailableLength, DataAvail-
ableTickStamp and calls the master’s DataAvailable func-
tion.

For each data payload provided by the slave, the master
processes the data, updates DataUsedLength, DataUsedTick-
Stamp and calls the slave’s DataUsed function. The master is
also responsible for collecting and processing each of the
Status responses set by the slave for each data payload.

For read transactions, according to an embodiment, the
slave determines how many beats to provide in each data
payload (i.e. in each call to the master’s data available func-
tion). For write transactions, according to an embodiment, it
is the master that determines the number of beats in each data
payload.

The following code shows a simple example implementa-
tion of a master device that issues 16 byte, 32-bit aligned,
non-wrapping, AXI burst read transactions onto a 4 byte wide
AXI bus.

10

15

48

void AxiMasterReadBusCommandUsed(tAmpiStdBusTransaction
*pBusCommand)

{
/*
** The command channel is now free, so another read transaction
could be
** jssued at this point, however the read transaction structure is still
in use,
** 50 a second read transaction structure would have to be utilized.
*/

In this example, a simple master device does not perform
any processing after the slave calls the CommandUsed func-
tion. However, a more complex device may issue further read
transactions once the command channel has been freed.

void Issuel 6ByteReadTransaction(tWord64 Address)
{
tInt32 NowBusTickStamp;
/*
% Set up the read transaction.
*/
IP->ReadTransaction.Length = 16;
IP->ReadTransaction.Address = Address & 0x07;
IP—>ReadTransaction.DataUsedLength = 0;
IP—>ReadTransaction.Command = readOp;
IP—>ReadTransaction.SubCommand =

(AxiBurstInerOrWrap << AxiSubCommandBurst TypeOffset) |

(AxiSize32Bits << AxiSubCommandSizeOffset) |

(AxiBurstLength4 << AxiSubCommandBurstLengthOffset);

IP->ReadTransaction.CwfOffset = 0;
IP->ReadTransaction.Decoder = readdecode;

IP—>ReadTransaction.pBusTransCommandUsed = AxiMasterReadBusCommandUsed;
IP->ReadTransaction.pBuspTransDataAvailable = AxiMasterReadBusDataAvailable;

/*
% Set tick stamps.
*/

NowBusTickStamp = AmpiClockGetNow TickStamp(IP->pMasterReadBusclock);

IP—>ReadTransaction.NowTickStamp = NowBusTickStamp;

IP—>ReadTransaction.CommandAvailableTickStamp = NowBusTickStamp;

IP—>ReadTransaction.CommandUsedTickStamp =

IP—>ReadTransaction.CommandAvailableTickStamp;

/*

** Issue the read transaction on the bus.

*/

AmpiStdBusRequest(IP->pMasterReadBus, &IP->ReadTransaction);

The initialization of the transaction data structure in the
above example is for a 4 beat, 4 bytes per beat incrementing
address read transfer. Wrapping transfers have non-zero val-
ues of CwfOffset and are not generated by this example
embodiment.

The master is also responsible for setting the pBus-
TransCommandUsed and pBuspTransDataAvailable call-
backs. These will be called by the slave to accept the com-
mand, and provide data payloads, respectively.

CommandUsedTickStamp is set to CommandAvailableT-
ickStamp to indicate that the command has not yet been
accepted by the slave. This example issues the bus transaction
at the current bus time. Transactions can also be issued at
future times (by setting both tick stamps to NowTickStamp+
TicksInFuture).

The following code example shows how a command chan-
nel is freed so that another read transaction can be issued.

50

55

60

65

tWord32 GetNumBeatsInPayload(tAmpiStdBusTransaction
*pBusCommand)

tWord32 AxiSize;
tWord32 TransferSize;
tWord32 NumBeats;
/*
** Determine the number of beats available in pSourceBuffer.
*/
AxiSize = (tWord8)(pBusCommand->SubCommand &
AxiSubCommandSizeMask)) >>
AxiSubCommandSizeOffset;
TransferSize = 1 << AxiSize;
NumBeats = (pBusCommand->DataAvailableLength —
pBusCommand—>DataUsedLength) /
TransferSize;
return NumBeats;

This utility function is used to retrieve the number of beats
available for processing in the transaction buffer and has only
been coded to deal with the aligned transfers which the pre-
ceding example master code is capable of generating. The

US 9,311,437 B2

49

number of beats is used to determine the correct
DataUsedTickStamp value.

50

void AxiMasterReadBusDataAvailable(t AmpiStdBusTransaction *pBusCommand)

tInstanceData *IP = (tInstanceData *) (pBusCommand->pMasterData);
tWord32 NumBeats;

/*

** Check if received transaction is valid

*/

if (&(IP->ReadTransaction) != pBusCommand)

AmpiStreamPrintf(ERROR__EXIT MSG, “Invalid read transaction\n”);

}

/*

** Check whether there is data to read

*/

NumBeats = GetNumBeatsInPayload(pBusCommand);
if (NumBeats == 0)

{

AmpiStreamPrintf(WARNING__MSG, “read transaction - No data to read!\n”);

return;

}

/*

** Check read response.

*/

if ((pBusCommand—>Status != StdBus2StatusSIvErr) &&
(pBusCommand—>Status != StdBus2StatusDecErr))

{
/*
** Copy the data to the transaction buffer
*/
while (pBusCommand->DataAvailableLength != pBusCommand->DataUsedLength)
IP—>DataBuffer[pBusCommand->DataUsedLength] =
pBusCommand—>pSourceBuffer[pBusCommand—>DataUsedLength];
pBusCommand—>DataUsedLength++;
¥
else
{
/*
** glave error - ignore the data in the buffer.
*/
AmpiStreamPrintf(WARNING__MSG, “read transaction - slave Error!\n”);
pBusCommand—>DataUsedLength = pBusCommand->DataAvailableLength;
}
/*

** Set DataUsed TickStamp - note that DataUsed must not be called until the master

** has finished processing the data.
*/

pBusCommand—>DataUsed TickStamp = pBusCommand—>DataAvailableTickStamp + 1*NumBeats;

/*

** call DataUsed.

*/

pBusCommand—>pBusTransDataUsed (pBusCommand);

/*

** Check to see if the transaction is finished

*/

if(pBusCommand—>Length == pBusCommand->DataUsedLength)

/*

*% All data has been transferred - transaction is complete

** The read transaction structure can be marked free for re-use.
*/

In another embodiment, the DataAvailable callback func-
tion handles: 1) processing the data in the transaction buffer,
2) checking the read response returned by the slave; and 3)
setting the DataUsedTickStamp value and signaling
DataUsed. For this device, no additional master processing is
required after the transaction has completed. If there were
processing required, it should be performed before the
DataUsed is signaled as it may cause a re-entry of the
DataAvailable callback.

60

65

Master Write Access

The following outlines how in one embodiment an AXI
master issues and processes a timed AXI write transaction:

1) Master initializes the transaction data structure, in par-
ticular, setting the Address, Length, and Command32 fields
as well as the pBusTransCommandUsed pBusTransDa-
taUsed and pBusTransResponseAvailable callbacks.

2) Master sets CommandAvailableTickStamp, Com-
mandUsedTickStamp, NowTickStamp, DataAvailable-
Length, DataAvailableTickStamp, and sets

US 9,311,437 B2

51

DataUsedlength=0, then issues the transaction on the appro-
priate bus port. It is up to the master whether to make the first
data payload available at this time (by setting DataAvailable-
Length and DataAvailableTickStamp). If the master provides
the first data payload at this time (that is, DataAvailable-
Length is non-zero), it should not call pBusTransDataAvail-
able for this payload but it must later be invoked for any
subsequent payloads. The pBusTransDataAvailable callback
in the transaction is not valid until after the transaction has
been issued to the slave port.

3) The SBPE routes the transaction to the appropriate slave
port, and calls the slave’s registered decode function.

4) The slave sets pBusTransDataAvailable and then either
returns or sets the CommandUsedTickStamp and calls the
master’s CommandUsed function. If the slave returns then it
must later update the transaction NowTickStamp, set the
CommandUsedTickStamp and invoke the master’s Com-
mandUsed function. The master is now free to issue another
transaction of this type on the bus.

10

15

52

8) When all of the data has been processed, the slave sets its
pBusTransResponseUsed callback function and sets the Sta-
tus field for the entire transaction, sets the ResponseAvail-
ableTickStamp and if necessary, updates the NowTickStamp
then calls the master’s pBusTransResponseAvailable func-
tion.

9) The master reads the slave response, then sets Respon-
seUsedTickStamp and calls the slave’s pBusTransRespon-
seUsed function.

In accordance with the AXI protocol, in this embodiment,
only one slave response is returned, and this response applies
to the entire write transaction. There is no way for the master
to determine at which point in a burst transaction that an error
occurred.

The following code example shows a simple implementa-
tion of an AXI master that issues AXI write transactions.

void Issue32ByteWriteTransaction (tWord64 Address, tWord8 *pData)

tInt32 NowBusTickStamp;

/¥

** Set up the write transaction.

*/

IP—>WriteTransaction.Length = 32;
IP->WriteTransaction.Address = Address;
IP—>WriteTransaction.DataUsedLength = 0;
IP—>WriteTransaction.Command = writeOp;
IP—>WriteTransaction.SubCommand =

(AxiBurstInerOrWrap << AxiSubCommandBurstTypeOffset) |

(AxiSize32Bits << AxiSubCommandSizeOffset) |

(AxiBurstLength8 << AxiSubCommandBurstLengthOffset);
IP->WriteTransaction.CwfOffset = 0;
IP->WriteTransaction.Decoder = writedecode;
IP—>WriteTransaction.pBusTransCommandUsed = AxiMasterWriteBusCommandUsed;
IP—>WriteTransaction.pBusTransDataUsed = AxiMasterWriteBusDataUsed;

IP—>WriteTransaction.pBusTransResponse Available =

/¥

AxiMasterWriteBusResponse Available;

** Set tick stamps.

*/

NowBusTickStamp = AmpiClockGetNow TickStamp(IP->pMasterWriteBusClock);
IP—>WriteTransaction.NowTickStamp = NowBusTickStamp;
IP—>WriteTransaction.CommandAvailableTickStamp = NowBusTickStamp;
IP—>WriteTransaction.CommandUsed TickStamp =

/¥

IP—>WriteTransaction.CommandAvailableTickStamp;

** Make the first data payload available.

*/

IP—>WriteTransaction.pSourceBuffer = pData;
IP—>WriteTransaction.DataAvailableLength = 32;
IP—>WriteTransaction.DataAvailableTickStamp = NowBusTickStamp;

/¥

** Issue the write transaction on the bus.

*/

AmpiStdBusRequest(IP->pMasterWriteBus, &IP->WriteTransaction);

5) If the master made the first data payload available (that
is, DataAvailableLength is non-zero), the slave processes the
data as below, otherwise, the slave waits for the master to call
pBusTransDataAvailable.

6) For each data payload (other than the first, if the master
made a payload available at the point of issuing the transac-
tion), the master sets DataAvailableLength, DataAvailableT-
ickStamp and calls the slave’s DataAvailable function.

7) For each data payload provided by the master, the slave
sets DataUsedTickStamp, sets DataUsedLength=
DataAvailableLength, and if necessary, updates the
NowTickStamp then calls the master’s pBusTransDataUsed
function.

60

65

The initialization of the transaction data structure in the
above example is for an 8 beat, 4 bytes per beat incrementing
address write transfer. Wrapping transfers have non-zero val-
ues of CwiOffset and are not generated by this example.

In one embodiment, the master is also responsible for
setting the pBusTransCommandUsed, pBusTransDataUsed
and pBusTransResponseAvailable callbacks. These will be
called by the slave to accept the command, indicate data
payloads have been processed, and provide the write response
respectively.

In accordance with an embodiment of the invention, this
master device makes the first data payload available to the
slave at the time the transaction is issued. This is not compul-

US 9,311,437 B2

53

sory, and the master is free to set DataAvailableLength=0, and
call the slave’s pBusTransDataAvailable function after the
command has been issued.

If not providing the first data payload early, as in this
example, the master typically does not wait until pBus-
TransCommandUsed has been called to issue the data, as the
slave may be waiting for all data to be issued before issuing
this command used acknowledgement.

CommandUsedTickStamp is set to CommandAvailableT-
ickStamp to indicate that the command has yet been accepted
by the slave. This example issues the bus transaction at the
current bus time. Transactions can also be issued at future
times (by setting both tick stamps to NowTickStamp+
TicksInFuture).

Consider the following code example:

void AxiMasterWriteBusCommandUsed(tAmpiStdBusTransaction
*pBusCommand)

/*
** The command channel is now free, so another write transaction
could be

10

15

20

54

-continued

** jssued at this point, however the write transaction structure is still
in use,

** 50 a second write transaction structure would have to be utilized.
*/

void AxiMasterWriteBusDataUsed (tAmpiStdBus Transaction
*pBusCommand)

/*

** data payload has been processed - additional payloads can be
made

** available here by setting DATS, DAL and calling
pBusTransDataAvailable.

*/

The simple master device in this example transfers all of
the write data in a single payload. The StdBus AXI protocol
allows master devices to determine how many beats to trans-
fer in a single payload. Each payload, other than possibly the
first payload which can be issued with the transaction com-
mand, is transferred by calling the slave’s pBusTrans-
DataAvailable function.

void AxiMasterWriteBusResponseAvailable(tAmpiStdBusTransaction *pBusTransaction)

{

tInstanceData *IP = (tInstanceData *) (pBusTransaction->pMasterData);

/¥

** Set ResponseUsedTickStamp and invoke ResponseUsed.

*/

pBusTransaction—>ResponseUsed TickStamp =

pBusTransaction—>ResponseAvailableTickStamp + 1;

pBusTransaction—>pBusTransResponseUsed(pBusTransaction);

/¥

** Check if write was successful.

*/

if ((pBusTransaction—>Status == StdBus2StatusOkay) ||
(pBusTransaction—>Status == StdBus2StatusExOkay))

** Check that all data payloads have been sampled.

if(pBusTransaction—>Length == pBusTransaction—>DataUsedLength)

** write transaction is complete.

else if (pBusTransaction—>Status == StdBus2StatusSIvErr)

** write failed - attempt the transaction again.

AmpiStreamPrintff WARNING__MSG, “write transaction - slave error!\n”);
IssueWriteTransaction(pBusTransaction—>Address, pBusTransaction—->Length);

else if (pBusTransaction—>Status == StdBus2StatusDecErr)

AmpiStreamPrintflERROR__EXIT_ MSG, “write transaction - slave decode error\n”);

{
/*
*/
{
/*
*/
¥
¥
{
/*
*/
¥
{
¥
/*

** All data has been transferred - transaction is complete

** The write transaction structure can be marked free for re-use.

*/

US 9,311,437 B2

55

In one embodiment, the AxiMasterWriteBusResponse Av-
ailable callback function handles: 1) checking the write
response returned by the slave; and 2) setting the Respon-
seUsedTickStamp value and calling the slave’s pBusTrans-
ResponseUsed callback function. For this device, no addi-
tional master processing is required after the transaction has
completed.

AXI Transaction Timing

In this description, it is assumed there are five independent
channels in the StdBus AXI protocol: read command, write
command, read data, write data, and write response. Each
channel uses bus tick stamps to indicate the transaction tim-
ing, and callback functions to handle the VALID/READY
handshaking between the master and slave devices.

In another embodiment, for the read and write command
channels, the master device sets the CommandAvailableTick-
Stamp (CATS), which indicates the clock edge at which a
command payload is made available. In the AX1 protocol, this
corresponds to the clock edge at which command valid is
asserted.

In one embodiment, the slave device is responsible for
setting the CommandUsedTickStamp (CUTS). In AXI pro-
tocol, the CUTS indicates the clock edge at which both com-
mand valid and command ready are sampled as asserted. This
edge may be well ahead of the NowTickStamp (NTS). For
checking purposes, the CUTS is initialized by the master to be
equal to the CATS before the transaction is issued, indicating
that the command has not yet been accepted.

According to an embodiment of the invention, for the read
data channel, the slave sets the DataAvailableTickStamp
(DATS), which indicates the clock edge at which the data
payload is made available (corresponding to the clock edge at
which valid is asserted on the read data channel for the first
data beat contained within the data payload).

When the master has processed the read data, it sets
DataUsedTickStamp (DUTS), which corresponds to the
clock edge at which both read data valid and read data ready
are sampled as asserted for the last data beat within the data
payload.

In one embodiment, the write data channel works in a
similar manner to the read data channel except in the reverse
direction, that is, the master sets the DATS and the slave sets
the DUTS.

The fifth channel is the write response channel. In another
embodiment, this channel is only used for write transactions,
and in this case, the slave sets the ResponseAvailableTickS-
tamp (RATS), and the master sets the ResponseUsedTickS-
tamp (RUTS). In AXI protocol terms the RATS corresponds
to the edge at which write response valid is asserted, and, the
RUTS corresponds to the edge at which both write response
valid and write response ready are sampled as asserted.
Untimed Transactions

Untimed transactions are protocol independent. An AXI
master device issues an untimed transaction in the same way
as a StdBusl protocol device. Neither the StdBus type 1
protocol Grant, Partial and Complete callback functions, nor
the various StdBus type 2 protocol Available and Used call-
back functions are used for untimed transactions. An example
of issuing an untimed 16 byte read transaction is as follows:

tWord32

tWord8

tAmpiStdBusTransaction

/*

** Initialize transaction data structure
*/

Index;
MyData[16];
BusTransaction;

10

20

25

30

35

40

45

50

55

60

65

56

-continued

BusTransaction.InterfaceVersion = StdBusInterfaceV1vl;
BusTransaction.StructureVersion = CompiledWithStdBusInterfaceVersion;
BusTransaction. TransProtocol = IP->MasterProtocol;
BusTransaction.Length = 16;

BusTransaction.Address = 0x1000000;

BusTransaction.Command32 = UNTIMED__READ_ OP;
BusTransaction.DoneLength = 0;

/*

** Issue Untimed read transaction

*/

AmpiStdBusUntimedCommand(IP->pMasterReadBus, & BusTransaction);
/*

*% Check that transaction succeeded

*/

if (BusTransaction. DoneLength != BusTransaction.Length)

{

AmpiStreamPrintf(ERROR__ MSG, “Untimed read failed!\n”);

¥
else
{
/*
** Process read data
*/
for (Index = 0; Index < BusTransaction.Length; Index++)
MyData[Index] = BusTransaction.pSourceBuffer[Index];
¥
¥

Because untimed transactions return directly, that is, no
scheduling occurs between issuing the command and when it
completes, the transaction data structure can be allocated on
the stack of the calling task.

Byte Enables

The StdBus AXI protocol optionally supports byte enables
on write transactions. An AXI master can set pTransByteEn-
ables to NULL to indicate that the entire write transfer is to
take place. When not NULL, pTransByteEnables must point
to an array of bytes of length Length, the total data length of
the transfer. A value of OxFF in a byte of the array indicates
that the respective byte is to be accessed, whilst a value of
0x00 indicates that it is not accessed. Other byte values are not
supported. FIG. 18 shows how a byte enable array 1800 can
be set-up, in an embodiment, to ignore odd bytes, and write
only even numbered bytes in the transfer.

The following code example shows how the byte enable
array 1800 can be set up to ignore odd bytes, and write only
even numbered bytes in the transfer.

tWord32
tWord8
/*

% Set the byte array to only store even bytes
*/

for (Index = 0; Index < 8; Index+=2)

Index;
ByteEnableArray|[8];

ByteEnableArray[Index] = OxFF;

/*
** Set the odd bytes to be ignored.*/
for (Index = 1; Index < 8; Index+=2)

ByteEnableArray[Index] = 0x00;
}
/*
** Set the byte enable array in the bus transaction.
*/
IP—>BusTransaction.Length = §;
IP—>BusTransaction.pTransByteEnable = ByteEnable Array;

In one embodiment, the Byte Enable array must be the
length of the entire transaction data, such that the DAL and

US 9,311,437 B2

57
DUL act as offsets, relative to CwfOffset beat, into both the
Byte Enable array (if the pointer is not NULL) and the pSour-
ceBuffer data array.
In another embodiment, the array is intended to be used as
a data mask when writing data as shown in the following
code.

w

tWord8 Mask = pBusCommand->pTransByteEnable[Index];

IP->MyData[Index] &= (~Mask); 10
IP->MyData[Index] |= (pBusCommand->pSourceBuffer[Index] & Mask);
Critical Word First Offset

In accordance with an embodiment of the present inven-
tion, the CwiOffset field in the transaction data structure 15

indicates the index of the first beat to be processed in the
transaction. This field is only non-zero for wrapping AXI
bursts, and for most AXI master devices, it can be set to 0.

When this field is non-zero, using the DataAvailable-
Length and DataUsedLength fields as offsets into the data 2
buffer is as detailed in Section 3.

In one embodiment, wrapping burst accesses are typically
only generated by VPMs performing cached read or fetch
accesses. The StdBus AXI protocol in the embodiment
described herein does not support unaligned wrapping burst
accesses. If the CwfOffset field is non-zero, then, in an
embodiment, the transaction address must be aligned to the
beat size.

The code example below demonstrates setting up a wrap-
ping AXI burst, where CwfOffset is set to 2 and hence the 3¢
beat is the first beat to be processed.

” 35

** Set up a 4 beat, wrapping burst of 4 bytes per beat.

*/

IP—>BusTransaction.SubCommand = (AxiBurstIncrOrWrap <<

AxiSubCommandBurstTypeOffset) |
(AxiSize32Bits << AxiSubCommandSizeOffset) |
(AxiBurstLength4 << 40
AxiSubCommandBurstLengthOffset);

/*

** Transfer beat 2 (third beat) first.

*/

IP->BusTransaction.CwfOffset = 2;

45

In this example, the beats will be processed in this order: 2,
3,0,1.
Exclusive Accesses

In another embodiment, the StdBus AXI protocol supports
exclusive read and write operations through use of the Bus-
CycleAttributes field in the transaction data structure. Master
devices indicate that a particular transaction is exclusive by
setting the Exclusive Attribute bit prior to issuing the transac-
tion as shown below.
IP—BusTransaction. BusCycleAttributes|=
CycleExclusiveAttributeMask

In an embodiment, if the exclusive read or write is success-
ful, the slave sets Status in the transaction data structure to
StdBus2StatusExOkay. If the exclusive transfer fails, the
slave sets Status to StdBus2StatusOkay.
Locked Accesses

According to an embodiment of the present invention, the
StdBus AXI protocol supports locked read and write opera-
tions through use of the BusCycleAttributes field in the trans-
action data structure. Master devices indicate that a particular 65
transaction is locked by setting the LockedAttribute bit prior
to issuing the transaction as shown below.

50

55

60

58

IP—BusTransaction.BusCycleAttributes|=CycleLocked
AttributeMask

In one embodiment, master devices are responsible for
releasing the lock by completing an unlocked transfer (that is,
one with the LockedAttribute bit cleared) at the end of the
locked transfer.
Partial/Complete Callbacks

According to an embodiment of the invention, StdBus AXI
master devices do not set the partial or complete callbacks in
the transaction data structure. All communication with the
slave device occurs via the various Available and Used call-
back functions. The Partial and Complete callbacks are only
used in embodiments for more conventional buses, e.g., Std-
Bus type 1 protocols such as AHB, AHB_Lite protocols, etc.
Master Device Aborts

In one particular implementation, the StdBus AXI protocol
does not allow either the master or the slave to abort a trans-
action. All data beats, or sets of beats in the form of one or
more data payloads, in the transfer must take place, even if the
data is ignored (for example, if there is an error in the slave).

5.0: StdBus Features

The StdBus model within the COMET 5 Framework can be
configured in a variety of ways to allow the user to alter the
functionality and behavior of the model. These parameters
can be altered via the COMET 5 Framework GUI in the
platform configuration file. The parameters that are discussed
in the paragraphs below include: arbitration and arbitration
reporting; configuration of bus data and address width; pro-
tocol selection and timing; bus monitoring and VCD wave-
form output; and checking and tracing.

These features and configuration parameters apply to the
particular example embodiment described herein using the
COMET framework. Other embodiments may or may not
includes these features and/or parameters, or use other
mechanisms.

5.1 Arbitration and Arbitration Reporting

In an embodiment, StdBus for AXI model supports only a
single master connected to each instance of the SBPE, so the
Arbitration and BusArbitrationReport parameters in one ver-
sion are set to Disabled when using AXI protocol.

In another embodiment, the FixedPriorityArbitration-
.OverwriteDefaultPriorityldle and FixedPriority Arbitration-
.OverwriteDefaultPriority Active parameters are also ignored
and should be left to the default setting (0).

5.2 Configuration of Bus Data and Address Width

In accordance with an embodiment of the present inven-
tion, a BusWidth parameter sets the width of the data bus of
the respective StdBus instance in Bytes. In one embodiment,
this parameter is interrogated by the master and slave devices
connected to the bus instance in order to determine their
respective timing and behavior.

In another embodiment, an AddressBits parameter sets the
width of the address bus of the respective StdBus instance in
Bits. This parameter may be interrogated by the master and
slave devices connected to the bus instance in order to deter-
mine their respective timing and behavior.

5.3 Protocol Selection and Timing

In accordance with an embodiment of the invention, a
BusProtocol parameter selects the bus protocol. For StdBus
AXI protocol selection, this parameter should be set to AXI.
The protocol selection affects the timing and behavior of the
respective bus instance.

In one embodiment, when AXI protocol is selected, the
Timing.RequestLatency parameter is ignored, and should be
set to the default (1).

US 9,311,437 B2

59

5.4 Bus Monitoring and Trace Waveform Output

In versions of the bus model for more conventional, non-
AXIbuses, a trace is output for waveform display. Because in
one embodiment, Arbitration is set to Disabled for StdBus
AXI, no trace is output. This is because, according to an
embodiment, with Arbitration set to Disabled, no simulation
time synchronization is performed by the StdBus. Each trans-
action is processed when it is received and only the timing
values are updated. Simulation time is not advanced in rela-
tion to the transaction. Because in some embodiments, any
waveform trace output is in a format that is in a linearly
increasing time order, the embodiments described herein Std-
Bus cannot effectively create values in a waveform trace file
in such a format ahead or behind current time.

According to an embodiment, BusMonitoring is set to
Disabled for AXI bus modeling.

5.5 Checking and Tracing

In accordance with an embodiment of the present inven-
tion, the StdBus model is capable of checking compliance
with the protocol, e.g., the AXI protocol during the simula-
tion. This is importance for complex bus protocols such as
AXI.

In one embodiment, the model is also capable of generating
detailed tracing information which may be useful for debug-
ging.

The following parameters may be used to control protocol
checking and tracing within the StdBus model, and apply to
the particular example embodiment described herein, e.g.,
using the COMET framework. Other embodiments may or
may not includes these features and/or parameters, or use
other mechanisms.

Warningl evel:

This parameter controls the level of warnings that are gen-
erated by the StdBus model. When set to CriticalOnly, only
the most serious problems will cause a warning message to be
displayed. When set to All, the StdBus model will output
warnings for any inconsistent or incorrect behavior (for
example, the issuing of transactions with the bus clock
stopped, timing discrepancies, and other anomalies).

CheckingAndTracing.ProtocolChecking:

When set to Enabled, the StdBus model intercepts master
and slave callback functions to ensure that the order and
timing of the callbacks is consistent with the StdBus AXI
protocol. Warnings or errors are generated when non-compli-
ant behavior is encountered (For example, bad tickstamps or
callbacks out of order). Protocol checking will have an
adverse effect on simulation performance, but is useful when
developing a new device. When set to Disabled, no protocol
checking is performed. This option may be used when the
user is confident that the device is operating correctly.

CheckingAndTracing.Protocol Tracing:

When set to Enabled, the StdBus model generates protocol
trace information that may be useful when debugging device

10

15

20

25

30

35

40

45

50

60

behavior. Tracing output may be controlled using Tracing-
SampleRate and TracingTrigger.

CheckingAndTracing.ProtocolErrorForcesExit:

When set to Enabled, a protocol error causes the simulation
to exit. If this parameter is Disabled, the simulation will not
exit, but a warning may be issued. This parameter is only in
effect if protocol checking is enabled.

CheckingAndTracing. TracingSampleRate:

This parameter determines the frequency and quantity of
transaction information which is output by the bus and is only
in effect if protocol tracing is also enabled. For example, if set
to 1, abbreviated details of every transaction processed by the
StdBus model may be displayed; if set to 2, abbreviated
details of every second transaction may be displayed. Full
transaction tracing is enabled by setting this parameter to 0.

CheckingAndTracing. Tracing Trigger.

This parameter allows the user to enable tracing at a certain
point in the simulation and is only in effect if protocol tracing
is also enabled. For example, if set to 100, full or abbreviated
tracing (see TracingSampleRate above) is only enabled after
100 transactions have been processed by the StdBus model.
Setting this parameter to 0 causes tracing to be enabled as
soon as the simulation starts. From the point at which full
tracing is commenced, protocol checking is also enabled
regardless of the state of the ProtocolChecking parameter.
5.6 Example of Write Cycle Timing

Included herein is an example of a StdBus AXI write trans-
action. included are typical timing waveforms, a step-by-step
analysis of the timing waveform, and an example operational
flowchart including actual function calls and detailed expla-
nations.

FIG. 19 shows typical timing 1900 for a write transaction
which is requested to a StdBus instance with protocol set to
AXI. The width of the pulses shown are not representative of
the clock Cycle. The rising edge of each pulse is used to
indicate the active clock edge of the bus event in relation to the
bus clock and hence its corresponding tick stamp.

This example assumes that the slave is not processing any
other transaction when the master makes the request. The
slave timing in this case is 1 clock tick for command and
response channel processing, and two clock ticks for data
channel processing.

A tickstamp, called NowTickStamp (NTS) is not depicted
in FIG. 19. In an embodiment, it is the responsibility of the
master and slave devices invoking each function to ensure that
the NTS is updated whenever a synchronization event has
occurred and the transaction is to be passed from one to the
other. For example, if the write transaction is to be buffered
and a buffer is available, then no synchronization may be
necessary and the NTS may stay at the same value for the
entire transaction.

Table 3 shows details of the example depicted in FIG. 19.

TABLE 3
STEP1 STEP2 STEP3 STEP4 STEPS STEP6
CATS M: 4009 - 4009 4009 4009 4009 4009
1969
CUTS M:4009 S:4010 4010 4010 4010 4010
(CATS +1) -
1971
DATS undefined undefined M:4010- 4010 4010 4010
1973
DUTS undefined undefined undefined S:4012 - 4012 4012

1974

US 9,311,437 B2

TABLE 3-continued
STEP1 STEP2 STEP3 STEP4 STEPS STEP6

RATS undefined undefined undefined undefined S:4013 4013

(DUTS +1) -

1983
RUTS undefined undefined undefined undefined undefined M: 4014 -

1984
10

FIG. 20 illustrates the communication 2000 that occurs
between the various models: master device, StdBus (the bus
model), and the slave device.

As shown in FIG. 20, master device 2044 issues request
2050 on StdBus 2030 and sets CATS and CUTS to indicate
the tick when the command is available to slave device 2048
and the NowTickStamp to indicate the current tick in step a.

StdBus 2030 calls slave device’s 2048 timed write callback
function in step b.

The slave device sets CUTS to CATS+command timing,
then calls the master’s pBusTransCommandUsed function
2054 in step c.

Slave device 2048 then checks if data is available (by
checking DAL 2056), and if so, processes it. If no data is
available, slave device 2048 waits for master device 2044 to
set DAL and DATS and call the slave’s pBusTransDataAvail -
able function in step d. Master device 2044 is not permitted to
invoke this function from within the pBusTransCom-
mandUsed callback as this may lead to a deadlock and, for
this same reason, is not permitted by the AMBA AXI speci-
fication.

When slave device 2048 has processed a data payload, it
sets DUL=DAL, and sets the DUTS, and calls the master’s
pBusTransDataUsed function 2060 in step e. Steps d & e
continue until all data has been processed.

After all data has been processed, the slave device sets the
appropriate value in the transaction data structure’s Status
field (For example, StdBus2StatusOkay), updates RATS, and
then calls the master’s pBusTransResponseAvailable func-
tion 2062 in step f.

The master device sets the RUTS, then calls the slave’s
pBusTransResponseUsed function 2064 in step g.

5.7 Example of Read Cycle Timing

Included herein is an example of a StdBus AXI read trans-
action. Included are typical timing waveforms, a step-by-step
analysis of the timing waveform, and an example operational
flowchart including actual function calls and detailed expla-
nations.

FIG. 21 shows an example timing diagram 2100 for a read
transaction which is requested to a StdBus instance with
protocol set to AXI. The width of the pulses shown are not
representative of the clock cycle. The rising edge of each
pulse is used to indicate the active clock edge of the bus event
in relation to the bus clock and hence its corresponding tick
stamp.

This example assumes that the slave is not processing any
other transaction when the master makes the request. The
slave timing in this case is one clock tick for command chan-
nel processing, and two clock ticks for data channel payload
availability and one clock tick for data channel processing.

The NowTickStamp (NTS) is not shown in FIG. 21. Itis the
responsibility of the master and slave devices invoking each
function to ensure that the NTS is updated whenever a syn-
chronization event has occurred and the transaction is to be
passed from one to the other. For example, if the read trans-

15

20

25

30

35

40

45

50

55

60

65

action is immediately available, then no synchronization may
be necessary and the NTS may stay at the same value for the
entire transaction.

Table 4 shows details of the example depicted in FIG. 21.

TABLE 4
STEP1 STEP2 STEP3 STEP4
CATS M:4009-2169 4009 4009 4009
CUTS M:4009 S:4010 4010 4010
(CATS + 1)-
2171
DATS undefined undefined S:4012 4012
(CUTS + 2)-
2173
DUTS undefined undefined undefined M:4013-2174

FIG. 22 shows the communication 2200 that occurs
between the various models: master device 2244, StdBus
2230 (the bus model), and slave device 2248.

As depicted in FIG. 22, master device 2244 issues request
2250 on StdBus 2230 and sets the CATS and CUTS to indi-
cate the tick when the command is available to the slave and
the NowTickStamp to indicate the current tick in step a.

StdBus calls slave device’s 2248 registered timed read or
fetch callback function 2252 in step b.

Slave device 2248 sets the CUTS to CATS+command tim-
ing, then calls the master’s pBusTransCommandUsed func-
tion 2254 in step c.

Slave device 2248 sets the DAL to indicate the data pay-
load length, sets the appropriate value in the transaction data
structure’s Status field (For example, StdBus2StatusOkay),
and sets the DATS to CUTS+read availability timing, then
calls the master’s pBusTransDataAvailable function 2256 in
step d.

Master device 2244 processes the read data, sets the
DUL=DAL, and sets the DUTS, then calls the slave’s pBus-
TransData Used function 2258 in step e.

Steps d & e repeat for each data payload until all the data
has been read.

6. Details of Elements of the StdBus Transaction
Data Structure

This section provides, by way of example, details of the
elements and structures used in one embodiment of the Std-
Bus model for AXI, for use with the COMET framework.
Other embodiments may or may not include these features
and/or parameters, or use other mechanisms.
tAmpiStdBusTransaction *pNext;

This field acts as a link to allow this structure to be placed
in single or double linked queues. Links must be ignored once
transactions are passed between modules, e.g., “‘unlinked’
before passing to next module. This field should only be used
by AXI protocol master devices to keep track of inactive
transaction records, and by AXI protocol slave devices to
keep track of active AXI commands. Use of this field is
optional.

US 9,311,437 B2

63

tAmpiStdBusTransaction *pPrev;

This field acts as a link to allow this structure to be placed
in single or double linked queues. Links must be ignored once
transactions are passed between modules, e.g., “‘unlinked’
before passing to next module. This field should only be used
by AXI protocol master devices to keep track of inactive
transaction records, and by AXI protocol slave devices to
keep track of active AXI commands. Use of this field is
optional.
void *pMasterData

This field is used by the bus master device to store a pointer
to its own instance data structure so it can be accessed from
within the bus transaction data structure. See also pSlaveData
below.
tAmpiStdBusGrant pBusGrant

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tInt32 NowTickStamp

This field indicates the TickStamp for ‘Now’ which is the
TickStamp for current simulation time. Whenever control is
passed from one subsystem to another, the NowTickStamp
must be updated to reflect the current simulation time in bus
ticks.
tInt32 RequestTickStamp

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tInt32 GrantTickStamp

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tInt32 InProgress TickStamp

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tInt32 Completed TickStamp

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord32 Command32

This field indicates the bus transaction command type, e.g.,
READ_OP, WRITE_OP, FETCH_OP etc. This provides the
StdBus protocol engine with the information it needs to call
the appropriate registered callback function in the slave mod-
ule.

FIG. 23 shows how the Command32 field 2300 is actually
made up of 4 single byte sub-fields. As shown in FIG. 23,
Command32 field 2300 is comprised of Command 2391,
CwiOffset 2390, SubCommand 2393, and Decoder 2395.
Devices can access the sub-fields directly, or use the Com-
mand32 field 2300 to access all 4 bytes at once. The four
sub-fields depicted in FIG. 23 are described in greater detail
below.
tWord8 Command 2391

This sub-field specifies the enumerated operation code for
this transaction, for example, readOp, writeOp, fetchOp or
other operations.
tWord8 SubCommand 2393

This sub-field contains protocol specific transaction infor-
mation set by the master device. For the AXI protocol, it
specifies the Beat Size, Number of Beats and Burst Type of
the transaction.

AXI-specific details on this sub-field are provided in sec-
tion 3.

10

15

20

25

30

35

40

45

50

55

60

65

64

tWord8 CwiOffset 2390

This sub-field indicates the index, starting at 0, of the first
beat to be accessed by the slave. For AXI protocol master and
slave devices which support critical word first accesses, it
must be taken into account when using DataAvailablel.ength
and DataUsedLength as offsets into pSourceBuffer. AXI spe-
cific details on this sub-field can be found in Section 3.
tWord8 Decoder 2395

This sub-field specifies the decoder to be used for this
transaction, for example, readdecode, writedecode, fetchde-
code or other decoders.
tWord8*pSourceBuffer

This field contains a pointer to the source of data for the
transaction. It is supplied by a master device for write trans-
actions, and, by the responding slave device for read transac-
tions. The pointer value must share the same alignment as the
transaction address to within the beat size. For example, if the
transaction address is 4 byte aligned, but the beat size is 2
bytes, then the pSourceBuffer value must be at least 2 byte
aligned.
tWord32 BusCycleAttributes

This field indicates the StdBus Attributes for the bus trans-
action as set by the master device. These attributes are not
protocol dependant and may be used by various particular
protocols to determine other actions.

The 32 bit BusCycleAttributes transaction field definition
is as follows.

Bitfield name # Bits Description

OuterPageAttribute 4 Outer L2 cache page attributes

InnerPageAttribute 4 Inner L1 cache page attributes

Shared 1 1 =shared, 0 = non-shared.

Locked 1 1 =nextaccess is locked, O = next access
is not locked

Exclusive 1 1 =exclusive access, 0 non-exclusive
access.

PrivilegedMode 1 1 =privilege mode access, 0 = user mode
access.

DataAccess 1 1 =data access, 0 = instruction access.

Security Access 1 1 =security mode access, 0 = non-security
mode access.

Unused 18 Reserved

tWord64 Address

This field indicates the physical address of the numerically
lowest addressed byte for the bus transaction. The address
must always be represented as a little endian address in order
to match the natural little endian mode of the underlying X86
host system, regardless of the endian mode of operation of the
master device issuing the transaction.
tWord32 Length

The Length field is set by the master device to the total
number of bytes for the transaction counted from the Start
address to the End address inclusively. For protocols which
allow sparse byte enables, inactive bytes are included in this
count. For transactions with non-contiguous (sparse) byte
enables, byte enables must be defined using the pTransBy-
teEnable field.
tInt32 Status

This field is used to return the progress status of the trans-
action.

For the AXI protocol read transactions, the Status value is
set by the slave prior to calling the master’s pBusTrans-
DataAvailable callback function for each data payload. AXI
slaves return a response to the master for each beat of a read
transaction, so the slave must split the transaction into mul-
tiple payloads if the responses differ. All of the beats in any
payload are assumed to have the same response.

US 9,311,437 B2

65

For the AXI protocol write transactions, it is set prior to
invoking the master’s pBusTransResponse Available callback
function. It is used to indicate the transaction success/failure
type to the master.
tWord32 Donelength

This field should be set by slave devices for un-timed
transactions to indicate the total length of the transfer
(Length) which has taken place.

This field should not be used for timed transactions by AXI
protocol master and slave devices. For timed transactions it
should be set to 0 by the master device.
const tAmpiStdBusHandleMaster *pNetMasterHandle

This field is set up by the bus protocol engine at the time the
transaction is requested to contain the bus master handle for
this transaction. This field must not to be modified by the bus
master or slave devices.

Void *pTransExtend

This field contains additional data for specific commands
and is used only by virtual processor model master devices.

When implementing bus bridges or memory controllers,
this field should be copied from slave port transactions to
master port transactions on issue of the transaction, and from
master port transactions to slave port transactions for the first
data payload or response returned from the master port. If, for
example on a subordinate bus, the one input transaction must
be broken into a sequence of transactions in order to satisfy
protocol requirements, then, the field must be updated from
the value returned from the first transaction.
const tAmpiClockHandleSlave *pBusClock

This field contains the bus’s slave clock handle and is set up
by the bus protocol engine at the time the transaction is
requested. AXI master and slave devices should ignore this
field as it is primarily for debugging use by a debugging
module.
tAmpiStdBusTrans pBusTransComplete

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tAmpiStdBusTrans pBusTransPartial

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tAmpiStdBusVersion StructureVersion

This field specifies the transaction structure version num-
ber and is used for checking purposes only. It should be
initialized to CompiledWithStdBusInterfaceVersion by the
master device.
tAmpiStdBusVersion InterfaceVersion

This field specifies the transaction interface version num-
ber and may be used for conversion purposes if required. For
the AXI protocol, it should be initialized by the master device
to the actual StdBus interface Version used by the AXI master.
tInt32 WriteDataDelayTicks

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
void *pTransByteEnables

This field optionally points to an array of Byte Enables,
which is set up by master devices and, used by slave devices.
In AXI protocol, it is used to indicate which bytes of a write
transfer are to take place. A pointer value of NULL indicates
that the entire write transfer is to take place. When not NULL,
pTransByteEnables must point to an array of bytes of length
Length. A value of OXFF in a byte of the array indicates that
the respective byte is to be written. A value of 0x00 indicates
that it is not written. This field should be initialized to NULL
by a master if not used. See Section 3 for more details.

5

10

15

20

25

30

35

40

45

55

60

65

66

tWord32 TransMasterIndex

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord32 TransProtection

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tAmpiStdBusProtocol TransProtocol

The TransProtocol field is set up by master devices and
may be used by slaves to identify the transaction protocol in
use by the master device. For the AXI protocol master devices
it should be initialized to AxiProtocol.
tWord32 UntimedCommandExtend

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord32 UntimedCmdExtendMasterDataBuffer

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord32 UntimedCmdExtendSlaveDataBuffer

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord32 MasterEndianness

The MasterEndianness field in a StdBus transaction is used
to communicate the endian mode of the master device’s
access to the bus. The transaction address is always specified
as little endian, and, that when decoding accesses within a
device which are less than the width of a specified big endian
type, then a reverse endian transformation of the transaction
address may be required.
tWord32 TunnelStatus

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord64 TunnelStartAddress

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord64 TunnelEndAddress

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord32 ProtocolSideband

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord8 IdlePrioritylevel

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord8 ActivePriorityLevel

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
tWord16 UnusedPaddingl

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.
void *pSlaveData

This field is used by the decoded bus slave device to store
a pointer to its own instance data structure so it can be
accessed from within the bus transaction data structure. See
also pMasterData above.

US 9,311,437 B2

67

tInt32 CommandAvailableTickStamp

For the AXI protocol, this field indicates the tick stamp at
which the command valid signal is first asserted. It is set by
the master device to indicate the time at which the transaction
was issued to the bus. This TickStamp commonly represents
the start of the command, or address, phase of a transaction on
a bus. For checking purposes, the CommandUsedTickStamp
is initialized by the master at command Request time to be
equal to the CommandAvailableTickStamp, indicating that
the command has not yet been Accepted.
tInt32 CommandUsedTickStamp

For the AXI protocol, this field indicates the tick stamp at
which the command valid and ready signals are sampled
asserted. It is set by the slave device to indicate the time at
which the command was processed. This TickStamp com-
monly represents the end of the command, or address, phase
of a transaction on a bus.
tAmpiStdBusTrans pBusTransCommandUsed

This field points to a callback function which is initialized
by the master device and is invoked by the slave device. The
slave invokes this function after the current command has
been processed or buffered and the slave is ready to accept the
next command. The data for this transaction may not yet have
been processed, and that when the slave invokes this callback,
it is to inform that master that it may issue the next command.
tWord32 DataAvailableLength

For the AX1 protocol, this field indicates the total number
of valid bytes currently in pSourceBuffer. This may be less
than the total transaction length if the master or slave device
processes the data in multiple payloads. This value accumu-
lates as each payload in a burst transaction is processed. When
the CwiOffset field is zero, that is, the transaction is not
wrapping, then the first DataAvailableLength number of
bytes pointed to by pSourceBuffer are valid. When the
CwiOffset field is non zero, that is, the transaction is wrap-
ping, then the DataAvailableLength number of bytes pointed
to by pSourceBuffer and offset from the start by the CwfOff-
set beat and wrapping through to the beginning of the buffer
are valid. In either case, all data has been made available when
DataAvailableLength is equal to Length. The value of this
field can only be 0, Length, or an intermediate, beat-aligned
number of bytes.
tWord32 DataUsedLength

For the AX1 protocol, this field indicates the total number
of'bytes processed so far. At any time, the difference between
DataUsedlength and DataAvailablel.ength gives the number
of bytes yet to be processed in the current data payload. This
value is set to DataAvailableLength when the current data
payload is processed. All data has been processed when
DataUsedLength is equal to Length. The value of this field
can only be 0, Length, or an intermediate, beat-aligned num-
ber of bytes. It must always be set less than or equal to
DataAvailableLength.
tInt32 DataAvailableTickStamp

For the AXI protocol, this field indicates the tick stamp at
which new data is made available in pSourceBuffer for pro-
cessing. It is set by slave devices, for read transactions, or
master devices, for write transactions. This tick stamp repre-
sents the point at which the AXI data valid signal is first
asserted for the first beat of the new data payload which is
being made available. This first data beat can therefore be
sampled, or acted upon, one tick later. A transaction may
include one or more data payloads, each including one or
more data beats.
tInt32 DataUsed TickStamp

For the AXI protocol, this field indicates the tick stamp at
which processing of a payload of data was completed. It is set

10

20

35

40

45

55

65

68

by slave devices, for write transactions, or master devices, for
read transactions. This tick stamp represents the point at
which the AXI data valid and ready signals are sampled
asserted for the last beat of a data payload. A transaction may
include one or more data payloads, each including one or
more data beats.
tAmpiStdBusTrans pBusTransDataAvailable

This field points to a callback function which is initialized
by the master device, for read transactions, or, the slave
device, for write transactions. It is invoked by the slave
device, for read transactions, or, the master device, for write
transactions. Its invocation is used to indicate that a new data
payload, contained within the buffer pointed to by pSource-
Buffer, is available for processing. If the CwfOffset field is
zero, that is, the transaction is not wrapping, then
DataUsedLength gives the current offset into the buffer to the
next un-processed byte, and the number of unprocessed bytes
available in the data payload is given by DataAvailable-
Length-DataUsedLength. For write transactions, data avail-
ability is automatically signaled by a master device if the
DataAvailableLength is non-zero at the time at which the
transaction is requested to the StdBus protocol engine. It is
the responsibility of the slave device to check DataAvailable-
Length at the time the write transaction is received and pro-
cess any data payload which may exist at that time.
tAmpiStdBusTrans pBusTransDataUsed

This field points to a callback function which is initialized
by the slave device, for read transactions, or the master
device, for write transactions. It is invoked by the master
device, for read transactions, or, the slave device, for write
transactions. Its invocation is used to indicate that a data
payload has been processed. It must be invoked with
DataUsedLength set equal to DataAvailableLength.
tInt32 ResponseAvailableTickStamp

For the AXI protocol, this field indicates the tick stamp at
which the write response was made available. This tick stamp
represents the point at which the AXI response valid signal is
first asserted. This write response, in Status, can therefore be
sampled, or acted upon, one tick later.
tInt32 ResponseUsed TickStamp

For the AXI protocol, this field indicates the tick stamp at
which processing of the write response from the slave was
completed. This tick stamp represents the point at which the
AXI response valid and ready signals are sampled asserted.
tAmpiStdBusTrans pBusTransResponseAvailable

This field points to a callback function which is initialized
by the master device and invoked by the slave device on
completion of a write transaction. Its invocation indicates to
the master device that the Status field of the transaction con-
tains the slave device response.
tAmpiStdBusTrans pBusTransResponseUsed

This field points to a callback function which is initialized
by the slave device and invoked by the master once it has
processed the write response. Its invocation indicates to the
slave device that the write response has been accepted and the
next write response may be issued.
tWord32 Transldentity

The Transldentity field is set up by a master and used by a
slave to identify the transaction as originating from a particu-
lar master. In the case of a single identity master device this
field should be set to 0. This field corresponds to the AXI
protocol master ID bits for either both AXI read, or, all three
AXI write channels involved in a particular transfer. Since
this field is bound to a particular transaction, it is not time
dependent, and is valid for the entire duration of the transac-
tion.

US 9,311,437 B2

69

tWord32 UnusedPadding?2

This field should not be used by AXI protocol master and
slave devices. It should automatically be initialized to NULL
at the time of allocation of the transaction structure.

To conclude, the above fields of the data structure are
specific to the implementation used in the examples herein.
Those in the art will understand that the implementation
specific details are provided for completeness only, and
should not be construed to limit the application of any of the
features of the invention.

Although some of the description presented herein is in the
form of a computer programming language similar to C and
C++, the present invention is not restricted to a specific com-
puter programming language or constructs used to provide
data or programs.

Furthermore, in some cases, an API is mentioned, and
several function names used in such API. Alternate embodi-
ments include alternate forms for carrying out this function-
ality other than function calls. Further, when functions are
used, the particular function names and/or formats are not
meant to be limiting, but rather illustrative of one exemplary
embodiment of the present invention.

Unless specifically stated otherwise, as apparent from the
following discussions, it is appreciated that throughout the
specification discussions utilizing terms such as “process-
ing,” “computing,” “calculating,” “determining” or the like,
refer to the action and/or processes of a computer or comput-
ing system, or similar electronic computing device, that
manipulate and/or transform data represented as physical,
such as electronic, quantities into other data similarly repre-
sented as physical quantities.

In a similar manner, the term “processor” may refer to any
device or portion of a device that processes electronic data,
e.g., from registers and/or memory to transform that elec-
tronic data into other electronic data that, e.g., may be stored
in registers and/or memory. A “computer” or a “computing
machine” or a “computing platform” may include one or
more processors.

The methodologies described herein are, according to an
embodiment, performable by a processing system, e.g., the
host processing system that includes one or more processors
that accept computer-readable (also called machine-read-
able) code containing a set of instructions that when executed
by one or more of the processors carries out at least one of the
methods described herein. Any processor capable of execut-
ing a set of instructions (sequential or otherwise) that specify
actions to be taken are included. Thus, one example is a
typical computer processing system that includes one or more
processors. Each processor may include one or more of a
CPU, a graphics processing unit, and/or a programmable DSP
unit. The processing system further includes a memory sub-
system including main RAM and/or a static RAM, and/or
ROM. A bus subsystem may be included for communicating
between the components. The processing system further may
be a distributed processing system with processors coupled
by a network. If the processing system requires a display, such
adisplay may be included, e.g., aliquid crystal display (LCD)
or a cathode ray tube (CRT) display. If manual data entry is
required, the processing system also includes an input device
such as one or more of an alphanumeric input unit such as a
keyboard, a pointing control device such as a mouse, and so
forth. The term memory unit as used herein, if clear from the
context and unless explicitly stated otherwise, also encom-
passes a storage system such as a disk drive unit. The pro-
cessing system in some configurations may include a sound
output device, and a network interface device. The memory
subsystem thus includes a computer-readable storage

10

15

20

25

30

35

40

45

50

55

60

65

70

medium that carries computer-readable code (e.g., software)
including a set of instructions to cause performing, when
executed by one or more processors, one of more of the
methods described herein. When the method includes several
elements, e.g., several steps, no ordering of such elements is
implied, unless specifically stated. The software may reside in
the hard disk, or may also reside, completely or at least
partially, within the RAM and/or within the processor during
execution thereof by the computer system. Thus, the memory
and the processor also constitute computer-readable storage
medium carrying computer-readable code.

Furthermore, a computer-readable storage medium may
form, or be included in a computer program product.

In alternative embodiments, the one or more processors
operate as a standalone device or may be connected, e.g.,
networked to other processor(s), in a networked deployment,
the one or more processors may operate in the capacity of a
server or a client machine in server-client network environ-
ment, or as a peer machine in a peer-to-peer or distributed
network environment. The one or more processors may form
apersonal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or oth-
erwise) that specify actions to be taken by that machine.

7. Computer System Implementation

In an embodiment of the present invention, the methods
and systems of the present invention described herein are
implemented using well known computers, such as a com-
puter 2400 shown in FIG. 24. The computer 2400 can be any
commercially available and well known computer or server
capable of performing the functions described herein, such as
computers available from Gateway, Apple, Sun, HP, Dell,
Cray, etc.

Computer 2400 includes one or more processors (also
called central processing units, or CPUs), such as processor
2410. Processor 2400 is connected to communication bus
2420. Computer 2400 also includes a main or primary
memory 2430, preferably random access memory (RAM).
Primary memory 2430 has stored therein control logic (com-
puter software), and data.

Computer 2400 may also include one or more secondary
storage devices 2440. Secondary storage devices 2440
include, for example, hard disk drive 2450 and/or removable
storage device or drive 2460. Removable storage drive 2460
represents a floppy disk drive, a magnetic tape drive, a com-
pact disk drive, an optical storage device, tape backup, etc.

Removable storage drive 2460 interacts with removable
storage unit 2470. As will be appreciated, removable storage
unit 2460 includes a computer usable or readable storage
medium having stored therein computer software (control
logic) and/or data. Removable storage drive 2460 reads from
and/or writes to the removable storage unit 2470 in a well
known manner.

Removable storage unit 2470, also called a program stor-
age device or a computer program product, represents a
floppy disk, magnetic tape, compact disk, optical storage
disk, or any other computer data storage device. Program
storage devices or computer program products also include
any device in which computer programs can be stored, such as
hard drives, ROM or memory cards, etc.

In an embodiment, the present invention is directed to
computer program products or program storage devices hav-

US 9,311,437 B2

71

ing software that enables computer 2400, or multiple com-
puter 2400s to perform any combination of the functions
described herein.

Computer programs (also called computer control logic)
are stored in main memory 2430 and/or the secondary storage
devices 2440. Such computer programs, when executed,
direct computer 2400 to perform the functions of the present
invention as discussed herein. In particular, the computer
programs, when executed, enable processor 2410 to perform
the functions of the present invention. Accordingly, such
computer programs represent controllers of the computer
2400.

Computer 2400 also includes input/output/display devices
2480, such as monitors, keyboards, pointing devices, etc.

Computer 2400 further includes a communication or net-
work interface 2490. Network interface 2490 enables com-
puter 2400 to communicate with remote devices. For
example, network interface 2490 allows computer 2400 to
communicate over communication networks, such as LANs,
WAN:Ss, the Internet, etc. Network interface 2490 may inter-
face with remote sites or networks via wired or wireless
connections. Computer 2400 receives data and/or computer
programs via network interface 2490. The electrical/mag-
netic signals having contained therein data and/or computer
programs received or transmitted by the computer 2400 via
interface 2490 also represent computer program product(s).

8. Conclusion

While various embodiments of the present invention have
been described above, it should be understood that they have
been presented by way of example only, and not limitation. It
will be apparent to persons skilled in the relevant art that
various changes in form and detail can be made therein with-
out departing from the spirit and scope of the invention. Thus,
the breadth and scope of the present invention should not be
limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents. It will be understood
that the steps of methods discussed are performed in one
embodiment by an appropriate processor (or processors) of a
processing (i.e., computer) system executing instructions
(computer-readable code) stored in storage. It will also be
understood that the invention is not limited to any particular
implementation or programming technique and that the
invention may be implemented using any appropriate tech-
niques for implementing the functionality described herein.
The invention is not limited to any particular programming
language or operating system.

What is claimed is:

1. A method for processing data in a transaction through a
virtual bus structure model after inclusion of the virtual bus
structure model in one or more system designs including one
or more programmable processors, the virtual bus structure
model in the system designs located between a sender of data
and areceiver of data, wherein the sender of data is configured
to write data through the transaction and the receiver of data
is configured to read data through the transaction, the method
comprising:

determining a number of data beats to commit to supply

from a sender of data to a receiver of data;

marking a data channel as busy;

indicating a simulated time at which the first of the com-

mitted data beats will be available from the sender of
data;

signaling the receiver of data that the number of data beats

is available;

10

15

20

25

30

35

40

45

50

55

60

65

72

determining a number of data payloads needed to transfer

the number of data beats;

determining the point in simulated time at which the last of

the data beats will be accepted by the receiver of data;
and

signaling the sender of data the acceptance of a data pay-

load by the receiver of data, wherein the sender of data
sends the data within the committed data beats ahead of
simulation time to a receiver of data without compro-
mising cycle accuracy of the data.

2. The method of claim 1, wherein the determining of the
number of data beats is based on at least one of: availability of
the data; availability of the data channel; a current simulation
time; a transaction time, a total number of data beats, a size of
the transaction data to be transferred, and a state of one or
more pending transactions.

3. The method of claim 1, further comprising indicating an
intention to supply the number of data beats either directly in
the transaction or indirectly through another device.

4. The method of claim 1, further comprising storing the
committed data beats.

5. The method of claim 4, wherein storing the committed
data beats comprises moving the committed data beats into a
buffer associated with the transaction.

6. The method of claim 4, wherein storing the committed
data beats comprises creating an association between the
transaction and data beats located in an existing buffer.

7. The method of claim 1, wherein the determining the
point in simulated time at which the last of the data beats will
be accepted by the receiver of data is based on at least one of:
the simulated time of availability of the data payload, a cur-
rent simulation time, a transaction time, a total number of data
beats in the payload, and the ability to accept the data to be
transferred.

8. A non-transitory machine readable medium containing
executable instructions which when executed by a data pro-
cessing system cause the system to perform operations to
process data in a transaction through a virtual bus structure
model after inclusion of the virtual bus structure model in one
or more system designs including one or more programmable
processors, the virtual bus structure model in the system
designs located between a sender of data and a receiver of
data, wherein the sender of data is configured to write data
through the transaction and the receiver of data is configured
to read data through the transaction, comprising:

determining a number of data beats to commit to supply

from a sender of data to a receiver of data;

marking a data channel as busy;

indicating a simulated time at which the first of the com-

mitted data beats will be available from the sender of
data;

signaling the receiver of data that the number of data beats

is available;

determining a number of data payloads needed to transfer

the number of data beats;

determining the point in simulated time at which the last of

the data beats will be accepted by the receiver of data;
and

signaling the sender of data the acceptance of a data pay-

load by the receiver of data, wherein the sender of data
sends the data within the committed data beats ahead of
simulation time to a receiver of data without compro-
mising cycle accuracy of the data.

9. The non-transitory machine readable medium of claim
8, wherein the determining the number of the data beats is
based on at least one of: availability of the data; availability of
the data channel; a current simulation time; a transaction

US 9,311,437 B2

73

time, a total number of data beats, a size of the transaction
data to be transferred, and a state of one or more pending
transactions.

10. The non-transitory machine readable medium of claim
8, further comprising indicating an intention to supply the
number of data beats either directly in the transaction or
indirectly through another device.

11. The non-transitory machine readable medium of claim
8, further comprising storing the committed data beats.

12. The non-transitory machine readable medium of claim
11, wherein storing the committed data beats comprises at
least one of: moving the committed data beats into a buffer
associated with the transaction and creating an association
between the transaction and data beats located in an existing
buffer.

13. The non-transitory machine readable medium of claim
8, wherein the determination of the point in simulated time at
which the last of the data beats will be accepted is based on at
least one of: the simulated time of availability of the data
payload, a current simulation time, a transaction time, a total
number of data beats in the payload, and the ability to accept
the data to be transferred.

14. A data processing system to process data in a transac-
tion through a virtual bus structure model after inclusion of
the virtual bus structure model in one or more system designs
including one or more programmable processors, the virtual
bus structure model in the system designs located between a
sender of data and a receiver of data, wherein the sender of
data is configured to write data through the transaction and the
receiver of data is configured to read data through the trans-
action, the data processing system comprising:

a memory; and

a processor coupled to the memory, the processor config-

ured to:

determine a number of data beats to commit to supply from

a sender of data to a receiver of data,

35

74
indicate a simulated time at which the first of the commit-
ted data beats will be available from the sender of data,
determine a number of data payloads needed to transfer the
number of data beats,

determine the point in simulated time at which the last of

the data beats will be accepted by the receiver of data,
wherein the sender of data sends the data within the
committed data beats ahead of simulation time to a
receiver of data without compromising cycle accuracy
of the data.

15. The data processing system of claim 14, wherein the
determining of the number of data beats is based on at least
one of: availability of the data; availability of the data chan-
nel; a current simulation time; a transaction time, a total
number of data beats, a size of the transaction data to be
transferred, and a state of one or more pending transactions.

16. The data processing system of claim 14, wherein the
processor is further configured to indicate an intention to
supply the number of data beats either directly in the trans-
action or indirectly through another device.

17. The data processing system of claim 14, wherein the
processor is further configured to store the committed data
beats.

18. The data processing system of claim 17, wherein the
processor is further configured to move the committed data
beats into a buffer associated with the transaction.

19. The data processing system of claim 17, wherein the
processor is further configured to create an association
between the transaction and data beats located in an existing
buffer.

20. The data processing system of claim 14, wherein the of
the point in simulated time when the last data beat will be
accepted is based on at least one of: the simulated time of
availability of the data payload, a current simulation time, a
transaction time, a total number of data beats in the payload,
and the ability to accept the data to be transferred.

#* #* #* #* #*

